

Список принятых сокращений

Список принятых сокращений (рус.)

ВСП — верхний силовой привод

ГГД — график глубина-день

ГК — гамма-каротаж

ГКШ — гидравлический ключ штанговый

ДУ — давление устьевое

ДУСС — давление устьевое статическое

ДУ ГРП — давление гидроразрыва пласта

ДОЛ — датчик оборотов лебедки

ИВГ-истинная вертикальная глубина

ИВГУМ — истинная вертикальная глубина от уровня моря

ИПИ — интенсивность пространственной извилистости

КНБК – компоновка низа бурильной колонны

КТ — коэффициент трения

КПЭ — ключевые показатели эффективности

МР — момент на роторе

МСП — механическая скорость проходки

МНД — момент на долоте

МСП — механическая скорость проходки

ННД — нагрузка на долото

ННК — нагрузка на крюке

ННБ — наклонно-направленное бурение

ОР — обороты ротора

ПДВ — противодавление

ССПО — скорость спускоподъемных операций

Список принятых сокращений (англ.)

BP (Block position) — положение блока

Bit Speed Average — средняя скорость долота

DD (Directional Drilling) — Наклонно-направленное бурение

DT (Drilling Torque) — момент на роторе/ВСП

Flow Rate — расход

Flow in — расход на входе

FRA (Flow Rate Average) — средний расход

HL (Hook Load) — нагрузка на крюке

HLA (Hook Load Average)— средняя нагрузка на крюке

HB (Helical Buckling) — баклинг-эффект

KPI (Key Performance Indicators)— ключевые показатели эффективности

IPv4 (Internet Protocol version 4) — четвёртая версия интернет протокола (IP)

LWD (Logging While Drilling) — каротаж во время бурения

MWD (Measurement While Drilling) — измерения в процессе бурения

MSE (Mechanical Specific Energy) — удельная механическая энергия

Modbus — открытый коммуникационный протокол, основанный на архитектуре ведущий — ведомый (master-slave)

ROP (Rate of Penetration) — механическая скорость проходки

RPM (Rotation Per Minute) — обороты ротора

SPP (Standpipe Pressure) — давление на стояке SBP (Surface Back pressure) — противодавление TOB (Torque on Bit) — момент на долоте

Tripping speed — скорость спуско-подъемных операций

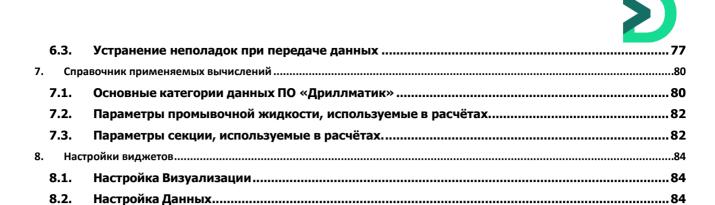
TVD (True Vertical Depth) — истинная глубина по вертикали

TVDSS (True Vertical Depth SubSea) — истинная вертикальная глубина от уровня моря

Thr (Threshold) — предельная величина

VPN (Virtual Private Network) — обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети

WOB (Weight on Bit) — нагрузка на долото


WITS (Wellsite Information Transfer Specification) — телекоммуникационный протокол передачи данных бурения WITSML (Wellsite Information Transfer Standard Markup Language) — телекоммуникационный протокол передачи данных

бурения

Оглавление

1.	Крат	кий обзор ПО «Дриллматик»	5
	1.1.	О программном обеспечении «Дриллматик»	5
	1.2.	Преимущества использования «Дриллматик»:	5
	1.3.	Основные функции «Дриллматик»	5
	1.4.	Основные технические характеристики «Дриллматик»	6
	1.5.	Отличия «Дриллматик» от существующих систем	6
	1.6.	Архитектура системы	7
2.	Треб	ования к шлюзу	9
3.	Реги	страция пользователя в ПО «Дриллматик»	11
	3.1.	Создание аккаунта и первый вход	11
	3.2.	Персональные настройки пользователя	12
	3.3.	Настройка пользовательских единиц измерения	14
	3.4.	Работа с каталогами	15
4.	Поль	эзовательский интерфейс «Дриллматик»	19
	4.1.	Шлюз	20
	4.1.1.	Мастер устройства	20
	4.1.2.		21
	4.1.3.	Конфигурации принимаемых каналов	22
	4.2.	Проекты	32
	4.2.1.	Информация о скважине	34
	4.2.2.	Проектная информация	39
		Мониторинг	
	4.2.4.	Анализ	53
	4.2.5.	Отчетность	58
		Команды	
	4.3.	Аккаунты	
	4.4.	Шаблоны	
	4.5.	Отчет	72
5.	Схема о	сновного рабочего процесса	73
	5.1	Ввод исходных данных по скважине	73
	5.2	Ввод плановых параметров по секции	
	5.3	Настройка расчетных параметров	75
	5.4	Основные возможности работы с мониторами	
	5.5	Работа с данными в режиме реального времени	
6.	Наст		
	6.1.	Настройка WITS0	
	6.2.	Настройка Modbus	77

1. Краткий обзор ПО «Дриллматик»

1.1. О программном обеспечении «Дриллматик»

Программное обеспечение **«Дриллматик»** (далее также — Дриллматик, Drillmatic, система, платформа, цифровая платформа) — это сквозная цифровая платформа, предназначенная для комплексного сопровождения всех этапов строительства скважин: от планирования до бурения и заканчивания. Решение ориентировано на нефтяные, буровые и сервисные компании и обеспечивает взаимодействие всех участников процесса в единой информационной среде.

Ключевые особенности:

Интеграция всех этапов: «Дриллматик» объединяет планирование, бурение, строительство и заканчивание скважин в одной системе, обеспечивая сквозную цифровизацию всего производственного цикла.

Единое информационное пространство: Заказчик, буровая компания и подрядчики работают в общей среде, где обмен данными происходит в реальном времени.

Работа с историческими данными: Система аккумулирует и анализирует данные по ранее пробуренным скважинам, помогая принимать более обоснованные и точные решения.

Поддержка принятия решений: Обеспечивает анализ данных в реальном времени и формирует рекомендации для корректировки процесса на лету.

Совместимость с различными системами: ПО «Дриллматик» поддерживает интеграцию с разными протоколами и базами данных, выступая как единый инструмент для всех участников процесса.

Самообучающаяся система: Использует алгоритмы машинного обучения и элементы ИИ для постоянного повышения эффективности бурения и снижения аварийности.

Унификация коммуникаций: «Дриллматик» формирует общий «язык» для взаимодействия инженеров, операторов и управленцев, минимизируя риски, связанные с человеческим фактором.

Назначение:

Программный комплекс предназначен для проектирования, сопровождения и автоматизации всех этапов строительства скважин. Он объединяет аппаратные и программные решения в одну систему для мониторинга, контроля, анализа, сбора данных и формирования отчетов.

1.2. Преимущества использования «Дриллматик»:

Быстрое принятие решений

Объединяет буровую установку, оперативные центры подрядчика и заказчика, позволяя принимать решения в режиме реального времени.

Повышение безаварийности

Использует ИИ и аналитику больших данных для предотвращения нештатных ситуаций и повышения надежности оборудования.

Оптимизация процессов

Упрощает управление разнородными системами и протоколами, устраняя технологические и организационные сложности.

Поддержка в режиме онлайн и прогнозирование

Создает цифровую модель скважины на основе текущих и архивных данных, предлагает точные рекомендации и обеспечивает контроль исполнения при внештатных ситуациях.

Контроль затрат

Предоставляет инструменты для точного планирования бюджета и ежедневного мониторинга расходов с возможностью их оптимизации.

Фокус на ключевых задачах

Устраняет избыточные коммуникации, объединяя всех участников в одной системе, что позволяет сосредоточиться на решении приоритетных производственных задач.

1.3. Основные функции «Дриллматик»

Сбор данных

- Интеграция данных из различных источников, включая ГТИ и каротаж, с агрегацией информации в режиме реального времени.
- Контроль качества поступающих данных и автоматическое уведомление о возможных искажениях критически важных параметров.
- Формирование достоверной статистики для оперативного анализа и поддержки принятия решений.

Визуализация данных

- Отображение информации в реальном времени через веб-интерфейс.
- Визуальный контроль за процессом строительства скважин.
- Гибкая настройка панелей мониторинга: единицы измерения, часовые пояса, язык интерфейса.
- Создание кастомных информационных панелей с аналитикой и показателями работы буровой (датчики, журналы, графики, диаграммы).
- Автоматическое преобразование данных по глубине и времени, синхронизация визуализаций.

- Онлайн отслеживание прогресса по бурению: глубина, темпы, отклонения от плана с возможностью комментирования.
- Поддержка мультиязычного интерфейса и локализованных библиотек.

Управление

- Единый инструмент для работы с проектными данными, информацией об оборудовании, технологиях и персонале. Передача
 - Надежная двусторонняя передача данных между буровой, координационными центрами и сторонними программами.

Хранение

- Облачное хранилище данных о скважинах.
- Инструменты управления документооборотом и пользовательскими правами.
- Совместная работа над проектами с возможностью многопользовательского взаимодействия.

Отчетность

• Автоматическое формирование отчетов и рапортов по запросу в различных форматах.

Ключевые показатели эффективности (КПЭ)

- Автоматическое определение операций внутри скважины и расчет КПЭ для бурения, спуско-подъемных операций (СПО) и наращивания.
- Определение текущей стадии строительства скважины.
- Детализированный анализ этапов бурения с возможностью формирования структурированных отчетов.
- Сравнительный анализ производительности бригад.
- Настройка пользовательских алгоритмов, включая логические условия и схемы принятия решений.

Предотвращение аварий

- Интеллектуальная система сигнализации, контроля соблюдения процедур и выдачи рекомендаций по устранению нештатных ситуаций.
- Протоколирование действий персонала и автоматическая проверка выполнения стандартов.

Оптимизация процессов

- Мониторинг операций в реальном времени и поиск зон для повышения эффективности.
- Выявление и сокращение технологических потерь и непродуктивного времени.
- Контроль соблюдения проектных параметров и оперативное обновление плана бурения.
- Функции проектирования скважин, включая моделирование бурильной колонны и гидравлический расчет.

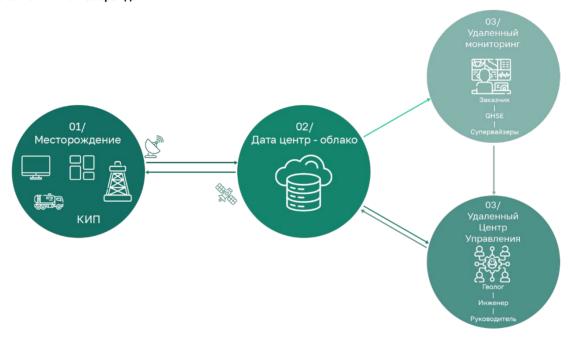
Динамическое моделирование механики и гидравлики

- Онлайн-мониторинг состояния бурильного инструмента и его ресурса.
- Контроль эквивалентной циркуляционной плотности и механической удельной энергии разрушения (MSE).
- Определение оптимальных параметров бурения и безопасных границ технологического режима.
- Построение и актуализация «дорожной карты» бурения на основе моделей в реальном времени.
- Предсказание развития ситуации и раннее выявление потенциально опасных явлений (НПВ).
- Автоматическая калибровка математических моделей и сравнение прогноза с фактическими данными для анализа трендов и отклонений.

1.4. Основные технические характеристики «Дриллматик»

- Интерфейс «Дриллматик» представляет собой современное веб-приложение, совместимое с различными операционными системами и доступное как с ПК, так и с мобильных устройств.
- Бэкенд-система может быть развернута как на локальном сервере (на буровой), так и в дата-центре заказчика либо в облачной инфраструктуре.
- Технологическая основа платформы Ubuntu. Решение использует современные технологии, включая потоковую обработку данных в Kafka, микросервисную архитектуру и гибридные базы данных (реляционные и NoSQL ориентированные).
- «Дриллматик» поддерживает распространённые промышленные протоколы Modbus, WITSO, WITSML 2.0, OPC UA
 — и обеспечивает интеграцию с закрытыми корпоративными системами.
- Для оперативного моделирования технологических процессов используется гидромеханическая модель скважины с частотой обновления данных 1 Гц.

1.5. Отличия «Дриллматик» от существующих систем


• Проектирование и контроль бурения осуществляются в едином цифровом пространстве.

- Решение ориентировано на три категории пользователей: операторы месторождений, буровые подрядчики и сервисные компании.
- «Дриллматик» единственная система, моделирующая физику и анализирующая процесс бурения в реальном времени.
- «Дриллматик» автоматически классифицирует состояния объекта, формирует систему сигналов и уведомлений, а также рассчитывает и отображает КПЭ.
- Виртуальные датчики позволяют получать значения в недоступных зонах, что снижает зависимость от дорогостоящих и ненадежных физических датчиков.
- Оптимизация бурения достигается благодаря точному моделированию механики колонны и гидравлики с учетом всех измеренных параметров.

1.6. Архитектура системы

« Дриллматик»: На месторождении

Рис.1.1

- Сбор и агрегация всех данных на скважине, включая каротаж и ГТИ, в режиме реального времени через шлюз.
- Отображение информации на консолях буровой в реальном времени.
- Обеспечение непрерывной двусторонней передачи данных между буровой и центром управления.
- Автоматическое определение текущих операций и анализ КПЭ для всех этапов бурения.
- Система интеллектуального оповещения персонала и контроля исполнения стандартных процедур.
- Модуль отслеживания и оперативной оптимизации буровых операций.
- Формирование автоматических отчетов и рапортов по запросу.

Оснащение буровой:

- Шлюз: промышленный ПК или ноутбук.
- Датчики: давления, нагрузки, расхода и другие.
- Каналы связи: мобильные или спутниковые.
- Консоли для операторов, инженеров и супервайзеров.

«Дриллматик»: В Облаке

- Агрегация и долговременное хранение данных со скважин.
- Безопасный и постоянный доступ к информации с любых устройств.
- Поддержка динамического моделирования и аналитики на основе больших данных.
- Инструменты управления проектами, персоналом и оборудованием.
- Единый репозиторий знаний и документации.

«Дриллматик»: Мониторинг и Управление

- Центр координации между офисом, буровой, подрядчиками и заказчиками.
- Сравнительный анализ КПЭ и контроль выполнения производственных задач.
- Удалённый контроль и сопровождение работы буровых бригад.
- Инструменты автоматического контроля за состоянием скважины и инструмента.
- Интеллектуальная система уведомлений, отслеживания решений и соответствия стандартам QHSE.

2. Требования к шлюзу

Минимальный набор измеряемых параметров (датчиков, установленных на буровой) приведен в таблице 1.1: Таблица 1.1

1.1	1.1		
Nº п/п	Параметр		
1	Глубина инструмента		
2	Глубина забоя		
3	Положение блока		
4	Нагрузка на крюк		
5	Нагрузка на долото		
6	Момент на роторе/верхнем приводе		
7	Момент на гидро-ключе / механическом ключе		
8	Обороты ротора/верхнего привода		
9	Расход на входе		
10	Давление в устье		
11	Скорость проходки		
12	Скорость СПО		

Дополнительные данные: MWD, LWD, DD и следующие измеряемые данные приведены в таблице 1.2. Таблица 1.2

1 1.2			
№ п/п	Параметр		
13	Расход на выходе		
14	Температура на входе		
15	Температура на выходе		
16	Показания ходов поршней		
17	Показания газоанализатора		
18	Уровни в ёмкостях		
19	Плотность на входе		
20	Плотность на выходе		
21	Противодавление		
22	Ускорение талевого блока		

Требования к проведению работ с использованием ПО «Дриллматик» на месторождении

Участники проекта

Необходимо заранее определить все стороны, вовлечённые в процесс бурения (буровой подрядчик, сервис ННБ, службы телеметрии, ГТИ, супервайзеры), и обеспечить корректную интеграцию их данных в ПО «Дриллматик».

Квалифицированный персонал на буровой

Должен быть назначен сотрудник, ответственный за контроль качества поступающих измерений и калибровку датчиков. При необходимости установки взрывозащищённого монитора потребуется также присутствие электрика и сварщика.

Стабильный канал связи

Для корректной работы шлюза необходимо наличие высокоскоростного беспроводного интернета (спутниковый или мобильный 4G/3G канал) со скоростью передачи и приёма не менее 1 Мбит/с.

Скорость интернет-соединения

Следует предоставить фактическую информацию о скорости передачи данных с буровой, например, результаты тестов с помощью сервисов Speedtest или Яндекс.Интернетометр.

Локальная сеть на буровой

Требуется наличие функционирующей локальной сети, объединяющей всех участников работ (буровая бригада, ГТИ, ННБ, телеметрия, растворный сервис). Необходимо наличие схемы сети с указанием IP-адресов всех узлов, методов их назначения

(DHCP или статический), а также описанием физического подключения (кабели, разъёмы или Wi-Fi).

Подключение шлюза к сети

Нужно предоставить способ подключения шлюза с указанием физического соединения и IP-адреса, выделенного для него в локальной сети.

Интеграция данных от подрядчиков

Следует согласовать форматы передачи данных в ПО «Дриллматик» (например, WITSO, Modbus и др.). От подрядчиков требуется перечень передаваемых каналов: номер записи, номер канала, тип физической величины и единицы измерения. Также необходимо указать IP-адрес отправляющего устройства и номер используемого порта.

Необходимо предварительное согласование форматов передачи вспомогательной информации: рапортов по раствору, характеристик долота и ВЗД, шламограмм, инклинометрии.

Обучение и допуск на объект

Все специалисты, приезжающие для подключения шлюза и обучения персонала буровой, должны соответствовать требованиям ГНВП, ОТ и ПБ, установленным на месторождении.

Средства индивидуальной защиты (СИЗ)

Все сотрудники, работающие на буровой, должны быть обеспечены необходимыми средствами индивидуальной защиты в соответствии с регламентом.

Дополнительный монитор бурильщика

При необходимости установки дополнительного взрывозащищённого монитора требуется:

- наличие физического пространства перед бурильщиком;
- выделенный ІР-адрес;
- физическое подключение монитора к роутеру буровой сети.

3. Регистрация пользователя в ПО «Дриллматик»

3.1. Создание аккаунта и первый вход

Каждому заказчику (пользователю, клиенту) предоставляется уникальный доменный адрес для входа в ПО «Дриллматик». Для создания новой учетной записи необходимо нажать кнопку «Регистрация»(Рис 3.1):

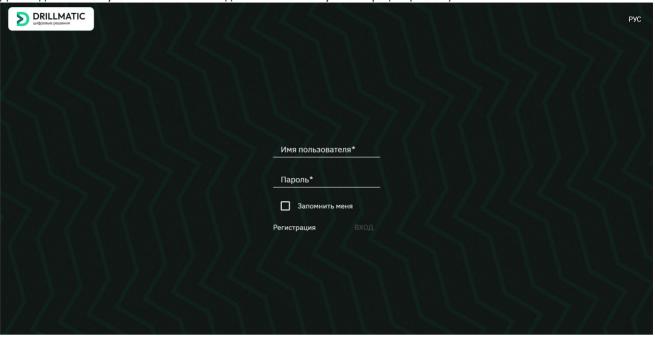


Рис.3.1 Заполните все обязательные поля.

Обратите внимание: поле «Организация» критично для корректного предоставления доступа к необходимым базам данных. Актуальное наименование вашей организации предоставляется Правообладателем ПО «Дриллматик».

Рис 3.2

Настройка ролей и прав доступа

После регистрации осуществляется присвоение учетной записи соответствующего уровня доступа.

В системе предусмотрено 5 уровней прав:

- User
- Client
- Administrator
- Organization Administrator
- Root Administrator

Распределение ролей сотрудников осуществляется руководством организации в зависимости от объема и характера взаимодействия с системой.

3.2. Персональные настройки пользователя

После получения доступа можно авторизоваться в ПО «Дриллматик» и настроить интерфейс. Для этого нажмите на кнопку в левом верхнем углу экрана (см. рис. 3.3):

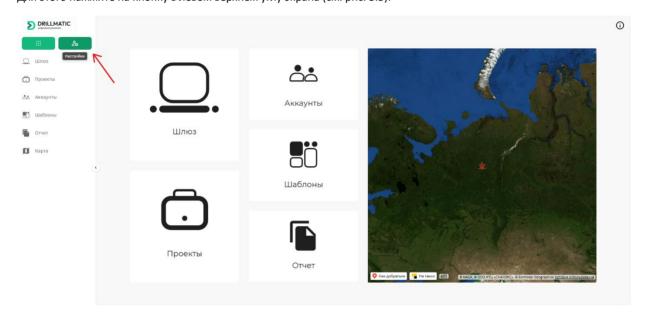


Рис. 3.3 В выпадающем меню выбираем пункт «Интерфейс».

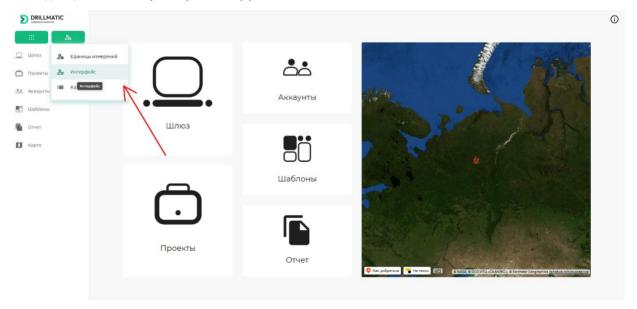


Рис. 3.4

В доступных настройках можно выбрать: Цвет темы (светлая или темная); Язык (русский, английский, китайский)

Часовой пояс.

Часовой пояс важен для корректного отображения данных при работе пользователей из разных регионов.

3.3. Настройка пользовательских единиц измерения

В разделе «Настройки» доступна настройка отображаемых единиц измерения всех параметров.

Если кто-либо из вашей организации уже настроил нужные единицы, вы можете автоматически применить их, указав логин соответствующего пользователя в поле «Пользователи» — система синхронизирует настройки.

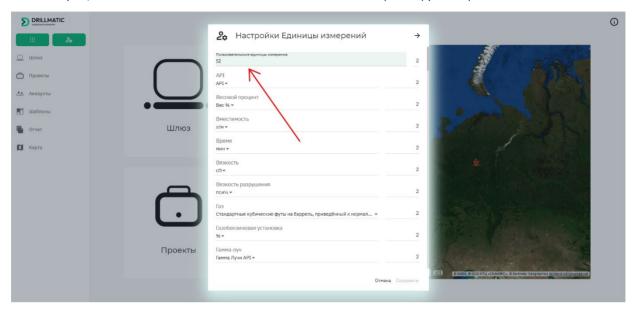


Рис. 3.5

3.4. Работа с каталогами

Раздел «Каталоги» используется для настройки ключевых параметров организации: бурильных труб, месторождений, стандартов качества и классификаций времени.

Доступны следующие типы каталогов:

Каталог материалов

Содержит информацию о материалах: тип, плотность, модуль упругости, предел текучести и другие характеристики, необходимые для гидравлических и механических расчетов. Эти данные также используются при редактировании элементов КНБК и труб.

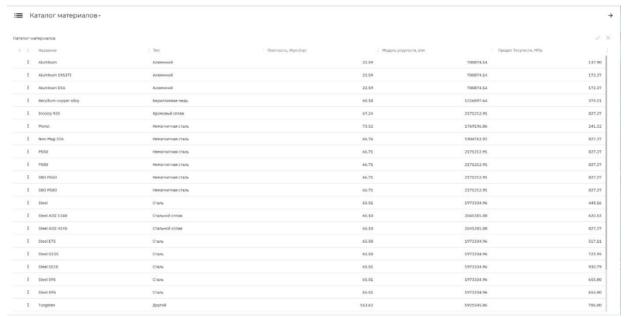


Рис. 3.6

Каталог НПВ

Здесь настраиваются категории производительного и непроизводительного времени, а также геологические осложнения. Эта информация отображается в аналитических виджетах.

Рис. 3.7

Каталог труб

Включает перечень буровых труб, используемых заказчиком, для быстрого добавления элементов в раздел КНБК.

Рис. 3.8

Каталог комплектов

Учитываются комплекты бурильного оборудования, что позволяет вести расчёты по усталостному напряжению инструмента.

Рис. 3.9

Каталог резьбовых соединений

Содержит список замковых соединений труб для удобства редактирования КНБК.

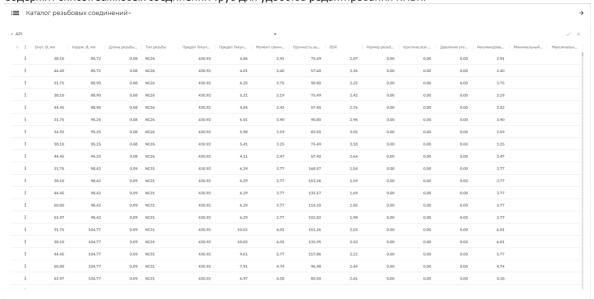


Рис. 3.10

Каталог месторождений

Вводится информация о месторождениях заказчика с указанием геолокации и основных характеристик.

Каталог кустов

Описываются параметры кустовых площадок, используемых на месторождениях.

Каталог контрагентов

Хранится перечень компаний, с которыми взаимодействует заказчик.

Каталог подрядчиков

Учитываются все подрядные организации, задействованные в проектах заказчика.

Каталог моделей ошибок

Содержит перечень возможных сбоев в работе телеметрических приборов.



Рис. 3.11

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru

Нормативы по качеству проводки ствола скважины

Настраиваются допустимые параметры искривления траектории скважины, отклонения по вертикали и горизонтали для различных типов участков

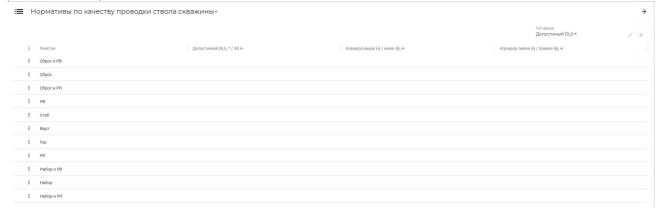
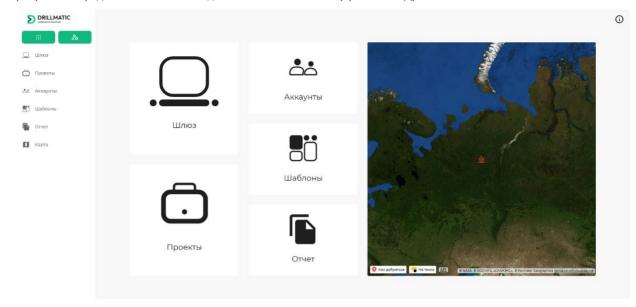



Рис. 3.12

4. Пользовательский интерфейс «Дриллматик»

На рисунке 4.1 представлен внешний вид пользовательского интерфейса ПО «Дриллматик»:

Рис.4.1

Интерфейс состоит из нескольких функциональных блоков, обеспечивающих управление и конфигурацию системы: Шлюз: вычислительное устройство (ноутбук или мини-ПК), размещённое на буровой и принимающее данные от различных источников. Через шлюз настраиваются каналы передачи данных от датчиков КИП, автотранспорта и других источников по протоколам WITSO, WITSML, Modbus и OPC UA.

<u>Проекты:</u> основной рабочий раздел для пользователей буровых компаний. Он связан с базовыми настройками блоков «Скважина» и «Буровые установки», а также с выбранным шлюзом, обеспечивая отображение всех текущих параметров на экранах.

Аккаунты: список сотрудников организации, имеющих доступ к проектам и работе в ПО «Дриллматик» (см. пункт 1.1). **Шаблоны:** преднастроенные конфигурации блоков системы, предназначенные для быстрого запуска и адаптации под конкретные условия эксплуатации.

Каждый из указанных блоков будет подробно рассмотрен далее.

4.1. Шлюз

В ПО «Дриллматик» шлюз представляет собой устройство пользователя, например, ноутбук или мини-ПК, установленный на буровой площадке. Он собирает данные с датчиков, подключенных через различные каналы (например, WITSO, Modbus). Все настройки шлюза применяются ко всем проектам, с ним ассоциированным (т.е. к тем, что бурятся с использованием данного шлюза).

Шлюз обеспечивает:

конфигурирование приёма данных с датчиков по поддерживаемым протоколам (WITSO, Modbus и др.); привязку физических каналов к виртуальным каналам, созданным в «Мастере устройства».

Управление и настройка шлюза выполняются через облачный интерфейс. Все изменения сначала вносятся в облаке, а затем автоматически синхронизируются с устройством на буровой. Обновление конфигурации занимает, как правило, несколько секунд и зависит от качества интернет-соединения.

4.1.1. Мастер устройства

«Мастер устройства» — инструмент для унификации конфигурации ПО «Дриллматик», а также для удобного копирования и перенастройки параметров на всех шлюзах. Расположен по пути: Дриллматик → Шаблоны → Мастер устройства. Доступ к нему имеет только пользователь с правами ADMIN.

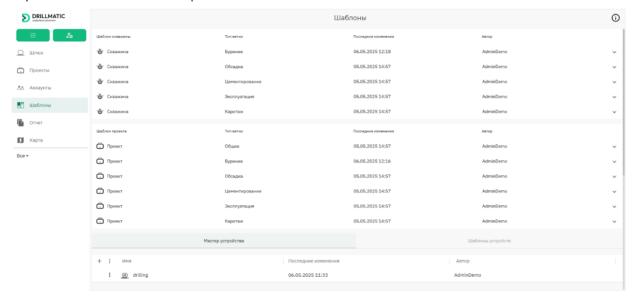


Рис.4.2

Функции мастер-устройства:

- настройка виртуальных каналов, групп, расчётов, экранов и пределов, автоматически применяемых на всех шлюзах;
- выбор параметров из виртуальных каналов для формирования системных параметров и модели скважины;
- настройка алгоритмов вспомогательных вычислений;
- контроль качества измерений;
- задание пределов параметров на основе технологических ограничений;
- конфигурирование интерфейса монитора бурильщика;
- настройки логики в разделе «Дерево решений».

Протоколы передачи данных «WITSO/MODBUS»

Используются для настройки связи внешних источников данных со шлюзом (на них ссылаются **Виртуальные каналы**). Прямые ссылки на протоколы в «Дриллматик» только для внутреннего пользования. Прописываются IP адреса, порты, регистры, категории, единицы измерения (изменения вносятся на «Шлюзе»)

Набор виртуальных каналов («КИП ГТИ», «КИП Буровая», «КИП ННБ»)

Используется для внутреннего пользования, отладки и настроек. Созданы для сохранения связей и упрощения копирования вычислений между шлюзами. **Виртуальные каналы** ассоциируются на настроенные протоколы **WitsO/MODBUS** (изменения вносятся на «Шлюзе»)

Набор каналов «КИП»

Используется для основных пользовательских шаблонных экранов, расчетов и пределов. Мнемоники канала **КИП** ассоциируются на набор **виртуальных каналов** (изменения вносятся на «Мастере устройства»)

«Системные параметры»

Входные данные для модели. Используются для внутреннего пользования, отладки, настроек. **Системные параметры** ассоциируются на канал **КИП**, либо на доп. расчеты для фильтрации или осреднения (<u>изменения вносятся</u> на «Мастере устройства»)

4.1.3. Конфигурации принимаемых каналов

Конфигурация каналов выполняется в разделе Конфигурация на шлюзе и зависит от протокола приёма данных. Поддерживаются: WITSO, Modbus, а также (в перспективе) WITSML и OPC UA.

Виртуальные каналы «КИП ГТИ», «КИП Буровой», «КИП ННБ»

В ПО «Дриллматик» данные могут поступать от нескольких подрядчиков, и одна и та же физическая величина может измеряться разными датчиками. Для корректных расчётов и построения цифрового двойника необходимо указать, какие именно измерения использовать.

Виртуальные каналы позволяют настроить источник данных для каждого параметра. Они предназначены для:

- внутреннего использования;
- настройки, отладки и сопровождения системы;
- сохранения связей и упрощения копирования конфигураций между различными шлюзами.

Каждый виртуальный канал привязывается к данным, получаемым по протоколам WITSO или MODBUS, в зависимости от поставщика. Настройка выполняется в интерфейсе шлюза, в разделе Конфигурация → Виртуальные каналы.

Примечание: при отказе, замене или необходимости переключения с одного датчика на другой, необходимо вручную выбрать новый источник данных в соответствующем виртуальном канале.

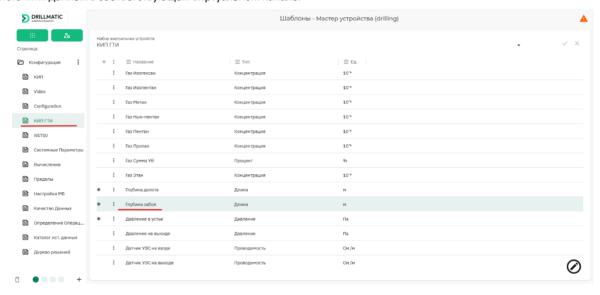


Рис.4.3

Смена источника данных осуществляется на Шлюзе в разделе Конфигурация в Виртуальных каналах.

Для этого на шлюзе надо зайти в пункт Конфигурация, открыть

один из Виртуальных каналов и найти интересующий измеряемый параметр.

Кликнуть на текущий Набор каналов, в выпадающем меню выбрать новый источник данных (на рис.4.4 выбран Wits 0).

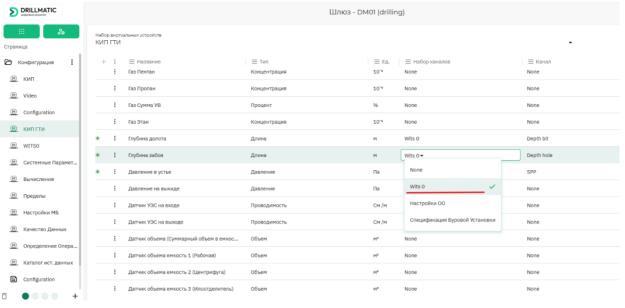


Рис.4.4

После этого в следующем столбце Канал в выпадающем меню надо выбрать измеряемый параметр (на рис.4.5 выбран Depth hole). Список измеряемых параметров в выпадающем меню будет соответствовать параметрам, принимаемым от данного источника и Типа параметра. После этого измеряемый параметр в «Дриллматик» будет переключён на новый источник.

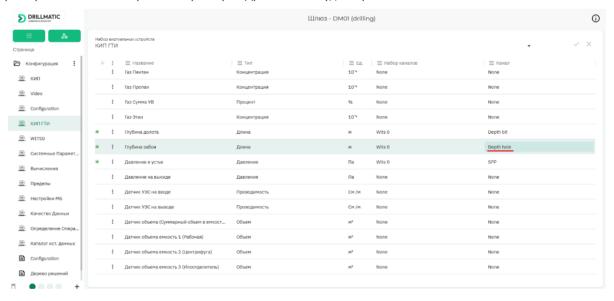
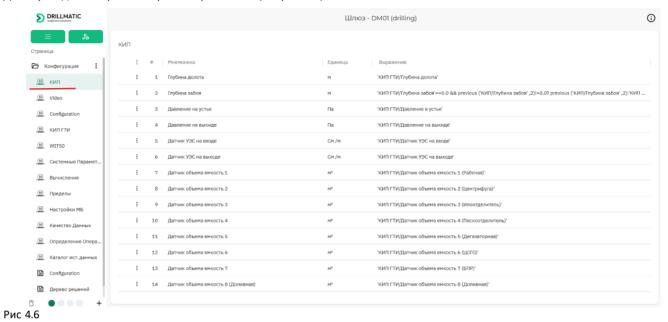


Рис.4.5


Канал КИП

Канал «КИП» используется для отображения данных на основных пользовательских шаблонных экранах, а также для выполнения расчётов и проверки значений на соответствие установленным пределам.

Мнемоники, отображаемые в канале «КИП», привязываются к выбранным виртуальным каналам (см. п. 4.3.3.1).

Важно: Изменение ассоциаций виртуальных каналов, а также настройка единиц измерения выполняются на Мастере устройства (см. п. 4.3.1).

Для перехода к настройке откройте экран «КИП» (см. рис. 4.6).

Если в канале «КИП» вместо прямого значения с виртуального канала используется расчётное значение, необходимо в выражении указать ссылку на соответствующий Набор каналов в разделе «Вычисления», где производится вычисление.

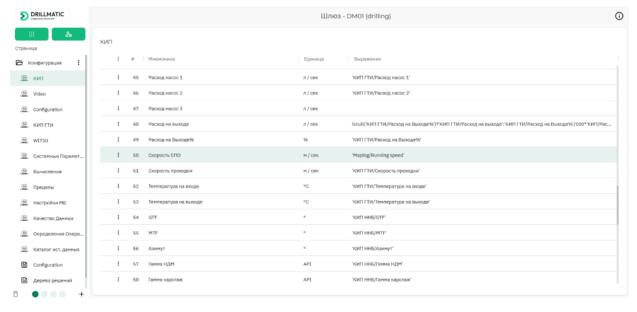


Рис 4.7

Перед этим в группе Вычисления надо прописать необходимое вычисление для мнемоники, с указанием названия источника данных и название параметра (рис. 4.8 и 4.9).

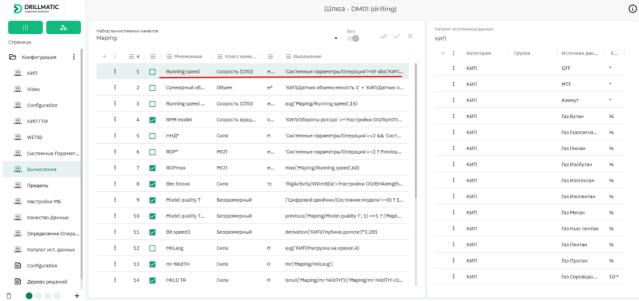


Рис 4.8

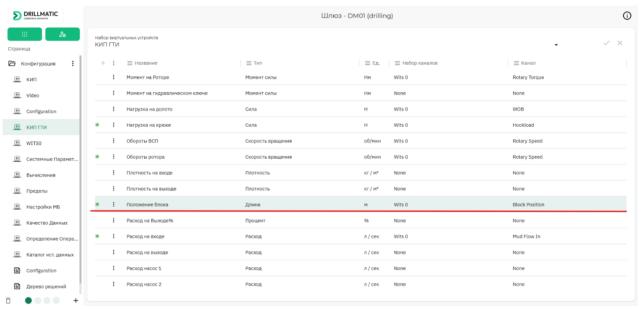
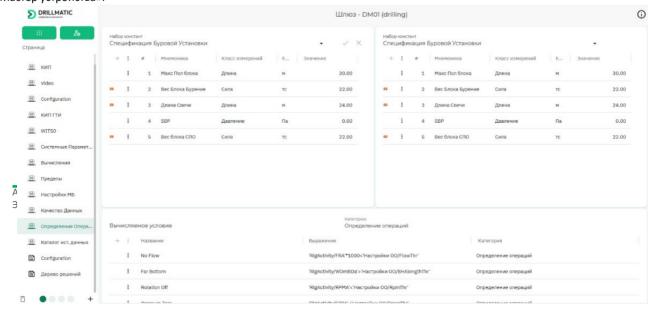



Рис 4.9

Системные параметры

Системные параметры выступают в качестве входных данных для вычислений цифрового двойника. Они (см. рис. 4.10) связываются с каналом вычислений «КИП» либо с дополнительными вычислительными каналами для выполнения фильтрации или усреднения, которые располагаются в группе «Вычисления».

Канал «КИП» в свою очередь ассоциируется с набором виртуальных каналов. Все изменения в канале «КИП» выполняются через «Мастер устройства».

Рис 4.10

Вычисления

Экран «Вычисления» включает набор вычисляемых каналов, предназначенных для выполнения расчетов, необходимых для определения технологических процессов и вычисления предельных значений.

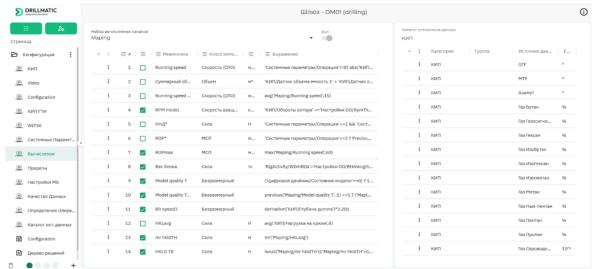


Рис. 4.11

Спецификация буровой установки

На этом экране представлены константы, специфичные для конкретной буровой установки. Эти константы используются в различных расчетах ПО «Дриллматик» и задаются перед началом бурения скважины.

Настройка монитора бурильщика

В «Дриллматик» предусмотрена возможность отображения данных на мониторе бурильщика. Этот экран позволяет настраивать и программировать кнопки монитора для переключения между заранее подготовленными наборами визуализируемых данных.

Рис.4.13

Определение операций

«Дриллматик» автоматически распознаёт операции, выполняемые на буровой. Для этого в системе заданы граничные условия (пороговые значения), срабатывание которых инициирует определение и смену текущей операции.

Изменение этих пороговых значений возможно только на Шлюзе и исключительно администратором проекта. В повседневной работе менять их не требуется.

Настройка и проверка порогов выполняется в группе экранов «Конфигурация» на экране «Определение операций».

Эл. почта: info@drillmatic.ru

Например, порог для определения состояния «на забое» равен 0,05 м (рис. 4.14). Это означает, что если разница между глубиной забоя и глубиной долота меньше 0,05 м, система считает, что долото находится на забое, и текущая операция — бурение.

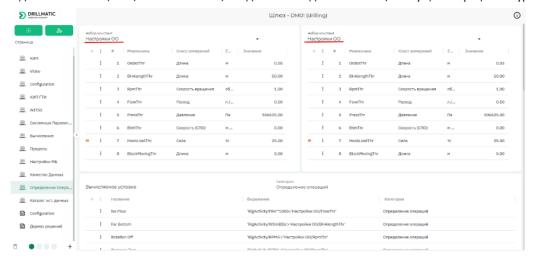


Рис.4.14

Контроль качества данных

«Дриллматик» учитывает качество поступающих данных и позволяет настраивать поведение системы при отсутствии новых измерений. Настройка осуществляется на Шлюзе в разделе «Конфигурация» — экран «Контроль качества данных». Для каждого измерения можно выбрать одно из трех вариантов поведения:

- 1. Как есть данные используются такими, какие есть; при отсутствии новых данных расчёты и отображение приостанавливаются (на графиках появляются «дыры»).
- 2. Предыдущее значение система продолжит использовать последнее полученное значение до поступления новых данных, тем самым заполняя «дыры».
- 3. Значение по умолчанию при отсутствии данных используется заранее установленное значение, которое настраивается в этом же разделе после выбора данного режима.

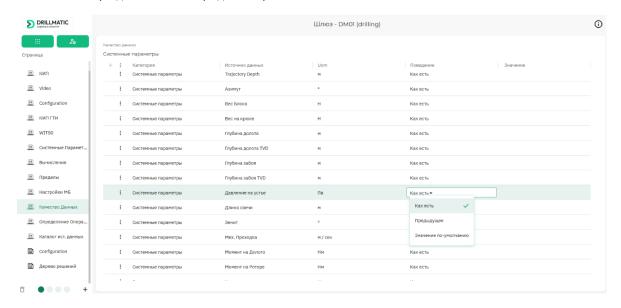


Рис.4.15

Дерево решений

Для реализации логики операций и управления действиями при наступлении определённых условий необходимо задать последовательность их выполнения. Это выполняется в разделе «Дерево решений».

Пользователь программирует последовательность, условия и решения, создавая логическую цепочку действий. Для доступа к разделу:

Drillmatic \rightarrow Шлюз \rightarrow Выбрать нужный шлюз \rightarrow Конфигурация \rightarrow Дерево решений (рис. 4.15).

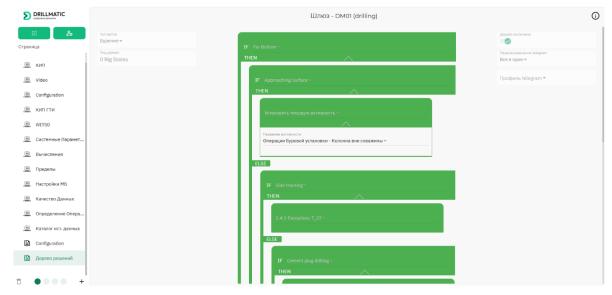


Рис.4.16 При создании цепочки решений доступны следующие варианты:

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru

- Создать действие решение, которое будет выполнено при выполнении заданных условий.
- Создать условие исходные параметры, при которых запускается дальнейшая логика ссылающаяся на действия, условия или поддеревья.
- Создать поддерево подраздел логики, который расширяет «Дерево решений» дополнительными ветвями и условиями.

Пределы

Для повышения эффективности работы при строительстве скважины в ПО «Дриллматик» реализована функция контроля предельных значений — «Пределы».

Её задача — контролировать и предупреждать всех участников процесса о превышении заданных граничных условий. Эти условия могут задаваться вручную или рассчитываться статически. В системе предусмотрены различные уровни предельных значений, настраиваемые под потребности пользователей (рис. 4.17).



Рис.4.17 Варианты отображения предельных значений на графике.

Предельные значения визуализируются с использованием цветовой гаммы, которая в связке с действиями в разделе «Дерево решений» может иметь предупреждающий характер либо блокировать выполнение определённых действий. При срабатывании пределов могут выполняться следующие действия:

- Всплывающий баннер с описанием условий нарушения.
- Всплывающий баннер с инструкциями по технологическим операциям, которые необходимо выполнить.
- Оповещение ответственных специалистов по электронной почте и через Telegram (рис. 4.18).

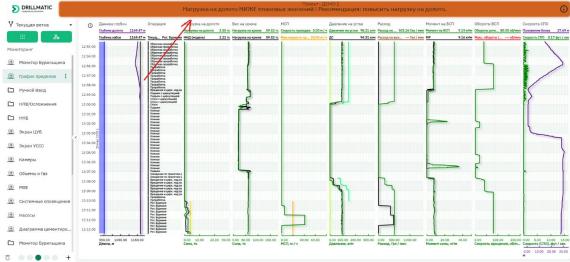


Рис.4.18 Оповещение посредством всплывающего баннера.

Типы пределов.

Для удобства настройки и обработки данных выделены следующие категории пределов:

Эл. почта: <u>info@drillmatic.ru</u>

Эксплуатационные (желтый, оранжевый, красный) — – нарушение технологических параметров процесса.

- Устьевое оборудование (оттенки фиолетового) параметры, влияющие на работоспособность устьевого оборудования.
- Колонна (оттенки фиолетового) параметры, влияющие на целостность бурильной колонны (например, риск поломок или усталостного разрушения).
- Скважина (голубой) параметры, отражающие состояние ствола скважины.

Подтипы пределов по способу вычисления:

- Статические действуют постоянно.
- Динамические активируются при выполнении определённых условий (например, в зависимости от текущей операции, времени задержки, состояния ствола и др.).

Для задания статических пределов необходимо ввести максимальные и минимальные значения, применимые к элементам оборудования. Это выполняется в разделе:

Drillmatic \rightarrow Проект \rightarrow Выбрать проект \rightarrow Ручной ввод \rightarrow Предельные значения (рис. 4.19).

Рис.4.19 Таблицы со статическими и динамическими пределами.

Также «Дриллматик» учитывает данные из раздела «План секции»: Drillmatic \rightarrow Проект \rightarrow Выбрать проект \rightarrow План секции (рис. 4.20).

Акционерное общество «ДРИЛЛМАТИК»

Эл. почта: info@drillmatic.ru

Рис.4.20 Ввод данных в разделе «План секции».

Настройка динамических пределов

Для корректной настройки динамических пределов потребуется перейти в:

Drillmatic → Мастер устройства → Конфигурация → Пределы.

Вычисления динамических пределов выполняются в:

Drillmatic → Мастер устройства → Конфигурация → Вычисления.

Классификация степеней превышения и занижения пределов

Для удобства предусмотрены три уровня предупреждений для превышающих пределов:

Максимальное предупреждение — желтый цвет.

Максимальная тревога — оранжевый цвет.

Максимум — красный цвет.

И три уровня для занижающих пределов:

Минимальное предупреждение — желтый цвет.

Минимальная тревога — оранжевый цвет.

Минимум — красный цвет.

Настройка каждого из уровней осуществляется по усмотрению пользователя и с учётом его требований к работе и оповещениям.

При необходимости можно задать не все три степени контроля, а только некоторые.

Задание пределов

Для задания пределов используется ввод математических выражений с ссылками на соответствующие разделы и источники данных.

4.2. <u>Проекты</u>

На главном экране выбираем «Проекты».

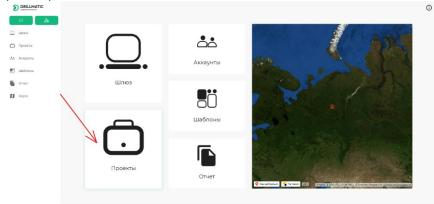


Рис. 4.21 Добавляем «Проект», нажимая «плюс» в левой части экрана.

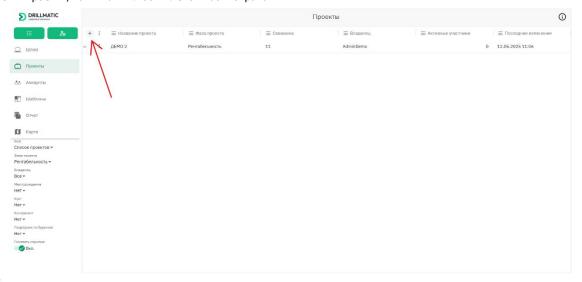


Рис. 4.22

Вводим характеристики Проекта:

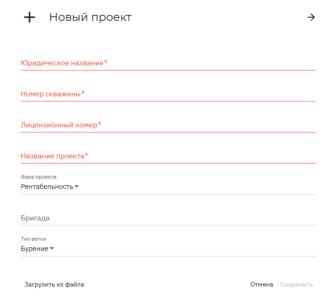


Рис. 4.23
Работа со скважиной в проекте
Заходим в созданный нами проект.

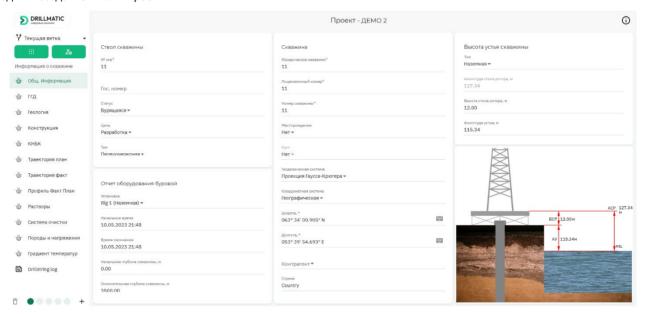


Рис. 4.24 В первом разделе проекта— «Информация о скважине» (включающем Геологию, Траекторию, Колонну и Жидкости)— данные автоматически подгружаются из ранее созданного объекта «Скважина».

4.2.1. Информация о скважине

Общая информация

На экране «Общая информация» представлены ключевые данные по выбранной скважине.

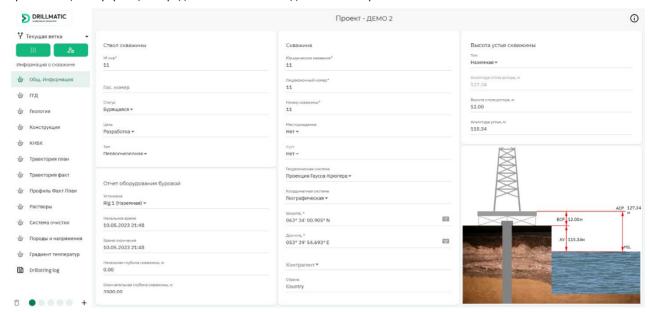


Рис. 4.25

График ГГД

Этот экран отображает график зависимости глубины от календарного времени («Глубина/день»). Построение графика и расчет времени бурения выполняются на основе эталонного плана, предварительно загруженного в систему.

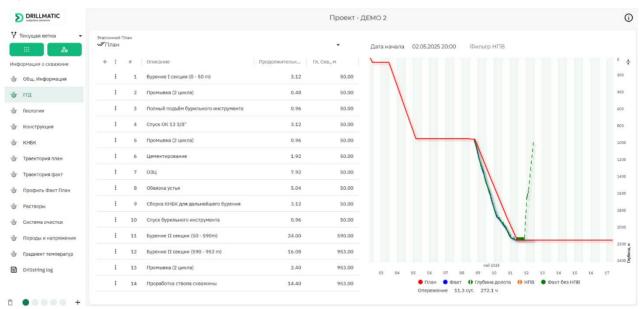
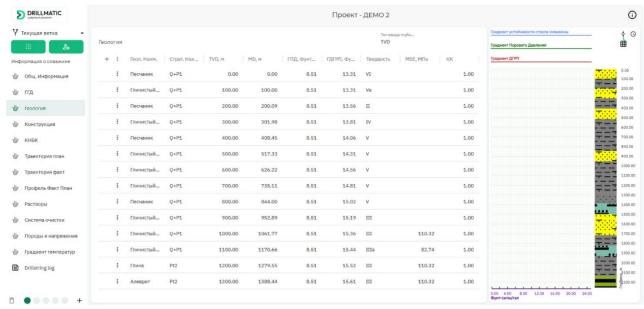



Рис. 4.26

Геология

Раздел «Геология» отображает сведения о геологическом разрезе скважины, добавленные на этапе создания объекта

«Скважина».

Рис. 4.27

Конструкция

Для каждой буровой секции требуется настроить параметры конструкции, введя соответствующие данные.

Также необходимо задать плановые режимные параметры для каждой компоновки — они указываются в разделе «План секции». Например, при описании секции под эксплуатационную колонну указываются все ранее пройденные диаметры открытого и обсаженного ствола. Последней строкой задаётся открытый ствол с диаметром, соответствующим используемому долоту.

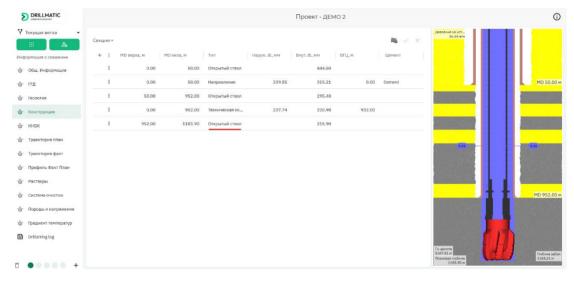


Рис. 4.28

После этого необходимо создать все планируемые компоновки.

При начале бурения следует выбрать актуальную КНБК и установить для неё режим «Текущая ветка».

Это указывает, относительно какой секции и компоновки система будет выполнять расчёты в текущий момент. После завершения бурения очередной секции необходимо переключать компоновку и назначать актуальную в качестве текущей ветки.

КНБК

В разделе «КНБК» настраиваются компоновки бурильной колонны, КНБК для проработок, обсадные колонны, а также оборудование для геофизических исследований и других операций.

Для каждой компоновки необходимо нажать кнопку в левом верхнем углу экрана и добавить все элементы с указанием их характеристик.

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru

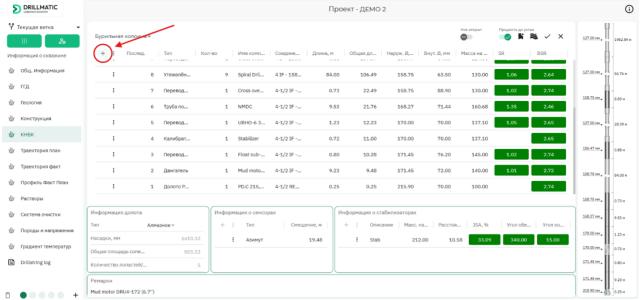


Рис. 4.29

По каждому элементу КНБК доступны дополнительные параметры — они открываются при выборе соответствующего элемента, и могут быть настроены вручную.

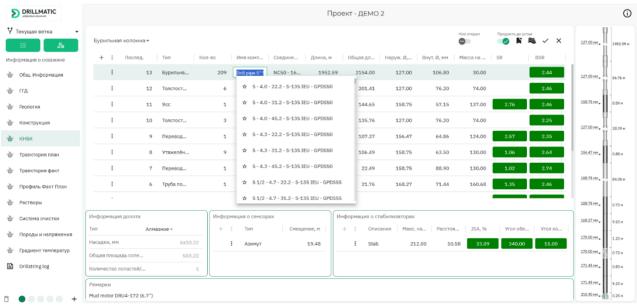


Рис. 4.30

Если нужный элемент оборудования отсутствует в списке, можно выбрать наиболее близкий аналог, а затем откорректировать его параметры вручную.

Профиль Факт, Профиль План

В этих разделах отображаются профили скважины:

Плановый профиль — траектория, запланированная на этапе проектирования.

Фактический профиль — реальная траектория, полученная на основании замеров при бурении.

Рис. 4.31

Траектория П/Ф

На данном экране отображается графическое сравнение плановой и фактической траекторий скважины.

Построение осуществляется на основе инклинометрических измерений.

Раздел предназначен для оценки отклонения фактического положения ствола от заданного проектом.

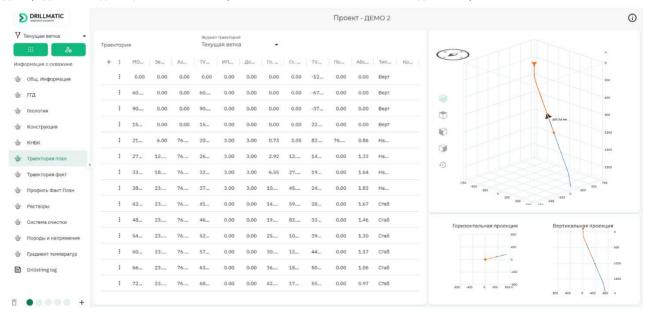


Рис. 4.32

Растворы

В данном разделе отображаются данные о буровых растворах

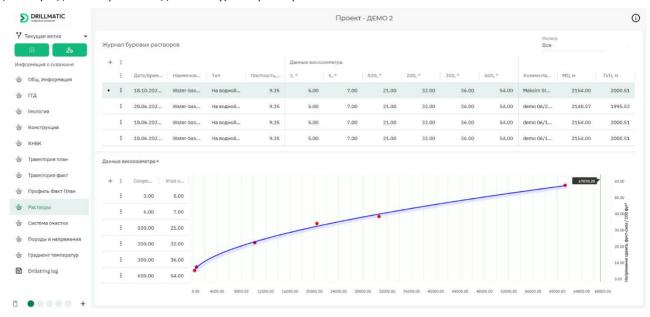


Рис. 4.33

4.2.2. Проектная информация

Страница «Проектирование» объединяет следующие экраны: «План траектории», «Анализ сближений», «Карта бурения» «План секции», «Расчет нагрузок», «ЭЦП», «Карта ГО», Шлам и очистка», «Резюме», «Анализ КНБК», «Гидравлика», «Коэфф. Трения», «Геомеханика» и других.

План траектории

Экран предназначен для построения плановой траектории скважины или её отдельных участков.

Для построения необходимо задать координаты целей в локальной или глобальной системе координат, а также радиусы геологических целей (T1, T2, T3).

Доступны следующие методы построения траектории:

Наклонная

S-образная

Стабилизация

Связать цели

Подъем/поворот

Простр. Угол/Полож. Откл.

Оптимальное выравнивание

Возврат в план

Ручной режим

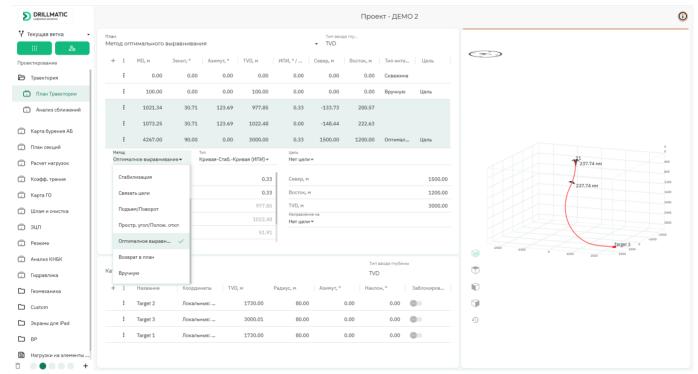


Рис. 4.34

После построения траектории её можно активировать как плановую, экспортировать в файл, а также сформировать отчёт по построению.

Анализ столкновений

Раздел предназначен для анализа возможных сближений траектории с соседними скважинами.

Расчёты выполняются при наличии в системе данных по другим скважинам, пробуренным с использованием «Дриллматик» или загруженным вручную с соответствующими замерами.

Эл. почта: <u>info@drillmatic.ru</u>

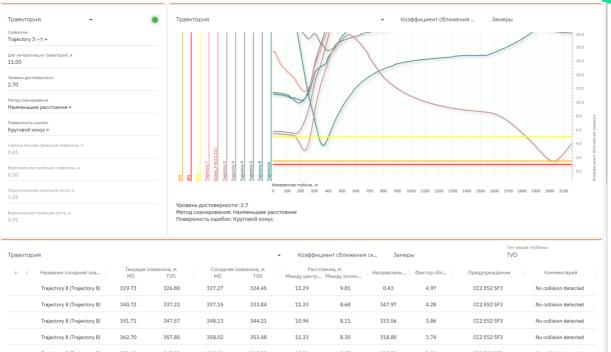


Рис. 4.35

Карта бурения

На данном экране производится работа с режимно-технологическими картами бурения. Данный экран состоит из трех вкладок. На первой вкладке заполняются планируемые режимы бурения, взятые из уже существующей план-программы. На второй вкладке ведется расчет параметров режима бурения в зависимости от типа бурения и геологического разреза. Расчет ведется исходя из ранее введенных данных по КНБК, геологии, буровым растворам. В результате расчетов ЦП «Дриллматик» выдаст готовую РТК бурения с разбивкой по интервалам труб либо по геологии, которая позволит достичь максимальной МСП без рисков повреждения наземного или внутрискважинного оборудования. При расчете карта бурения будет показывать нарушенные пределы, тем самым рекомендуя инженеру внести соответствующие правки для того, чтобы произвести бурение скважины в наиболее безопасном режиме и с максимально эффективными параметрами.

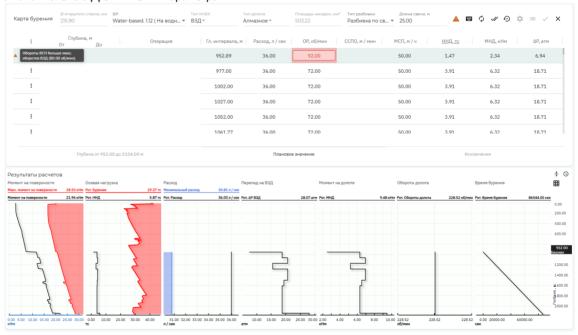


Рис. 4.36

План секции

Раздел «План секции» заполняется индивидуально для каждой компоновки (секции). Здесь необходимо ввести плановые режимные параметры из программы на бурение.

Рис. 4.37

Во вкладке «Жидкость» выбирается одна из ранее созданных промывочных жидкостей.

Пояснение к используемым сокращениям:

ОР — обороты ротора

МСП — механическая скорость проходки

ННД — нагрузка на долото

МНД — момент на долоте

ПДВ — противодавление (при использовании замкнутой циркуляционной системы с управлением давлением)

сспо — скорость спуско-подъемных операций

Расчет нагрузок

Раздел предназначен для визуализации плановых и предельных нагрузок, напряжений, моментов и давлений. Графики строятся на основе ранее введённых данных и пересчитываются при изменении параметров в разделе «План секции».

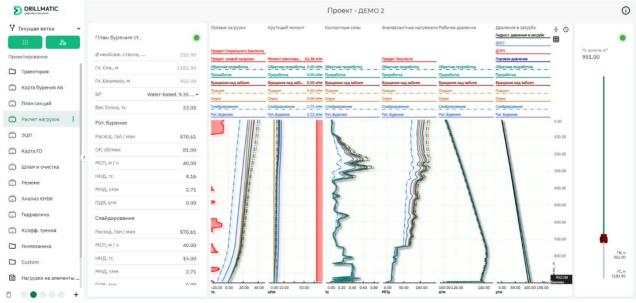


Рис. 4.38

ЭЦП

В данном разделе отображаются расчётные значения параметров плановой эквивалентной циркуляционной плотности (ЭЦП) при различных типах операций.

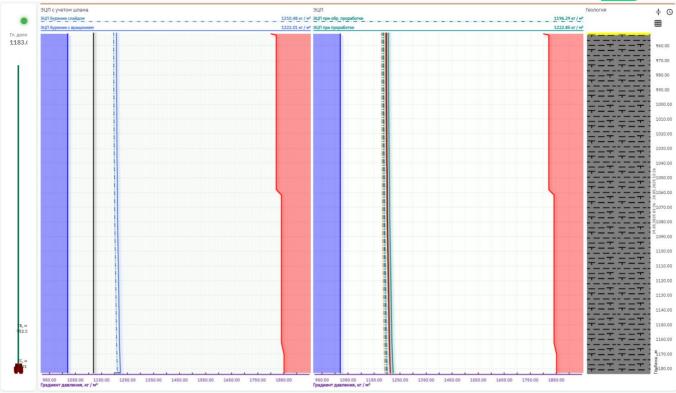


Рис. 4.39

Карта геологических осложнений

На данном экране производится настройка оповещений о геологических осложнениях.

Для добавления интервала геологического осложнения необходимо заполнить название геологического интервала, глубины кровли и подошвы осложненного интервала, тип осложнения и текст оповещения.

Обратите внимание, что глубины по стволу и по вертикали пересчитываются автоматически при переключении типа глубины.

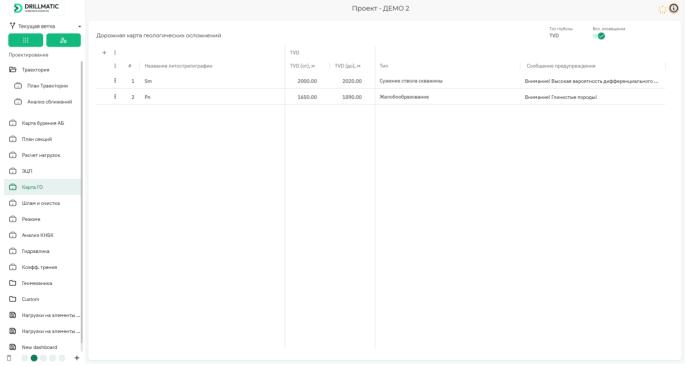


Рис. 4.40

Шлам и очистка

Данный экран представляет собой калькулятор гидравлических параметров:

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru

минимальный расход для очистки ствола скважины высота шламовой подушки концентрация шлама

индекс грузоподъемности бурового раствора

Для расчетов необходимо внести параметры положения долота, режима операции, выбрать буровой раствор и запустить расчет.

Резюме расчетов

На данном экране представлено резюме расчетов, произведенных на экране расчет нагрузок

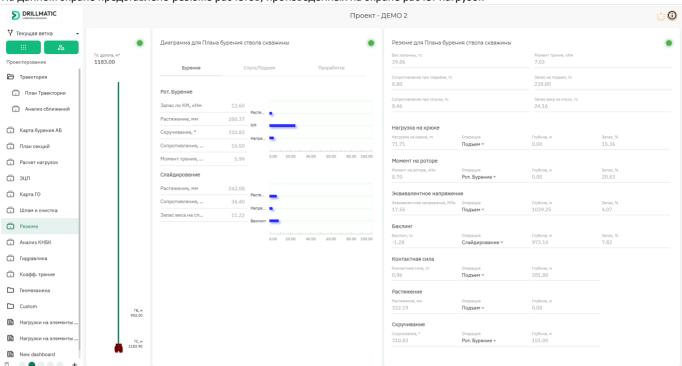


Рис. 4.41

Анализ КНБК

На данном экране производится оценка вибрационных нагрузок, которые будут действовать на элементы КНБК при различных параметрах режима бурения.

Этот инструмент позволяет подобрать оптимальные режимы бурения для сокращения латеральных вибраций КНБК на определенной глубине и оценки напряжений, которые будут ожидаться. Рис.

Рис. 4.42

Гидравлика

На данном экране производится подбор силовых характеристик забойного оборудования и подбор оптимального режима работы буровых насосов для обеспечения наилучшего режима работы ВЗД и долота с установленными насадками

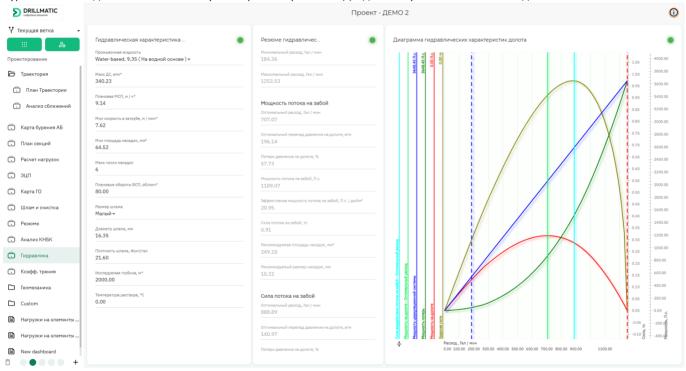


Рис. 4.43

Коэф. трения

Раздел используется для ввода плановых коэффициентов сопротивления в зависимости от типа операции:

- В открытом стволе
- В обсажённой части

Также здесь строятся веерные графики весов и моментов, по которым можно оценить фактические коэффициенты трения.

Рис. 4.44

Геомеханика

Группа Геомеханика состоит из двух экранов.

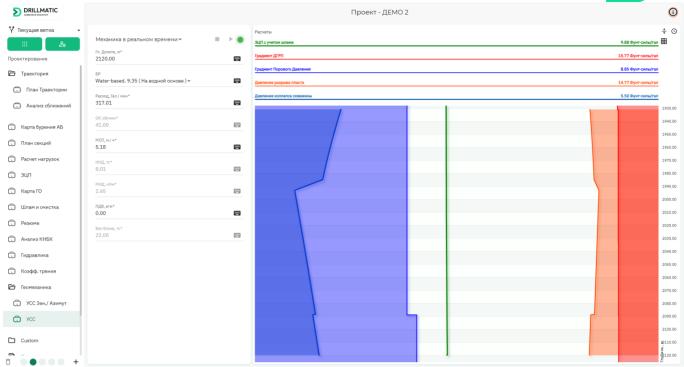

На первом экране производится расчет устойчивости ствола скважины на конкретную глубину относительно азимута и зенитного угла по заданной геомеханической модели пластов.

Рис. 4.45

На втором экране производится расчет слабых точек скважины, нарушение которых может привести к коллапсу стенок скважины.

4.2.3. Мониторинг

Раздел Мониторинг предоставляет доступ к набору визуальных панелей, каждая из которых может быть индивидуально настроена в соответствии с потребностями пользователя. Конфигурация данных экранов осуществляется совместно с техническим специалистом ПО «Дриллматик».

Для наглядности ниже приведены примеры стандартных панелей, уже реализованных в системе и доступных для использования или адаптации под конкретный проект.

График пределов

Данный экран визуализирует параметры, полученные от датчиков ГТИ либо с датчиков, установленных непосредственно на буровой. Отображаемые данные позволяют отслеживать ключевые параметры в режиме, приближенном к реальному времени, и оценивать их соответствие установленным порогам.

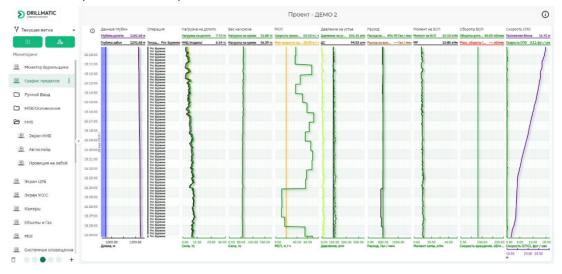


Рис. 4.47

Экран ННБ

Этот экран предназначен для отображения информации, поступающей от службы наклонно-направленного бурения (ННБ). Здесь представлены данные систем MWD и LWD, а также измерения, полученные с дополнительных датчиков, установленных специалистами ННБ, если таковые имеются. Информация используется для оперативного контроля параметров бурения в реальном времени.

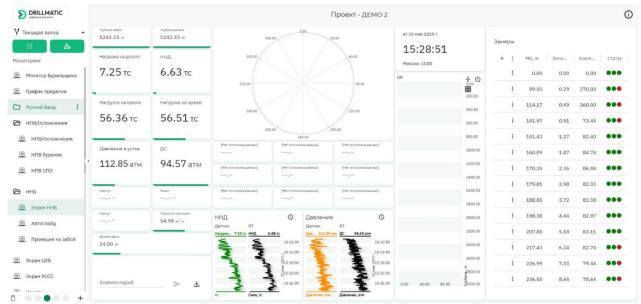


Рис. 4.48

Автослайд

Экран Автослайд предоставляет доступ к измерениям, полученным от службы ННБ, сопровождаемым трёхмерной визуализацией траектории скважины. В дополнение к этому реализован инструмент, позволяющий рассчитывать проекцию текущих измерений на предполагаемое положение забоя. Также доступна функция планирования курса бурения для двух последующих свечей с учётом

корректировки траектории в сторону проектной линии.

Рис. 4.49

НПВ/Осложнения

Данный экран автоматически отображает информацию о НПВ и геологических осложнениях, полученную из справочника «Каталог НПВ» (раздел *Настройки*). Для каждого события фиксируются дата начала и завершения, при этом расчёт общей продолжительности производится системой автоматически. Этот функционал позволяет отслеживать и анализировать возникающие отклонения в процессе бурения без необходимости ручного ввода данных.

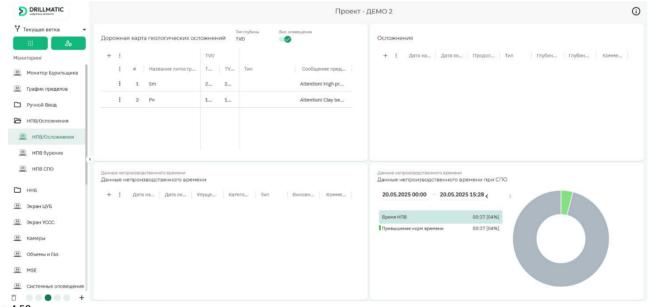


Рис. 4.50

Камеры

Экран Камеры предоставляет возможность подключения к видеопотокам с буровой установки для наблюдения за текущими операциями в режиме реального времени. Помимо онлайн-трансляции, доступен просмотр записей за прошедшие периоды — пользователь может выбрать интересующую дату и просматривать архив по часам для последующего анализа или проверки хода работ.

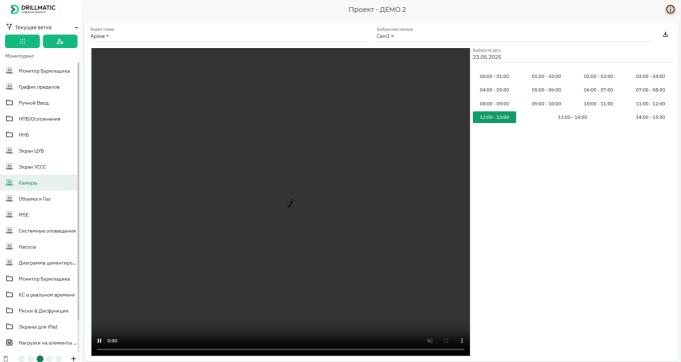


Рис. 4.51

Объемы и Газ

Данный экран предназначен для графического отображения данных в виде кривых. Он демонстрирует текущие объёмы в различных технологических емкостях, а также сведения, поступающие с газоанализаторов, включая концентрации отдельных видов газов. Такая визуализация позволяет оперативно отслеживать изменения в параметрах и своевременно реагировать на отклонения от нормы.

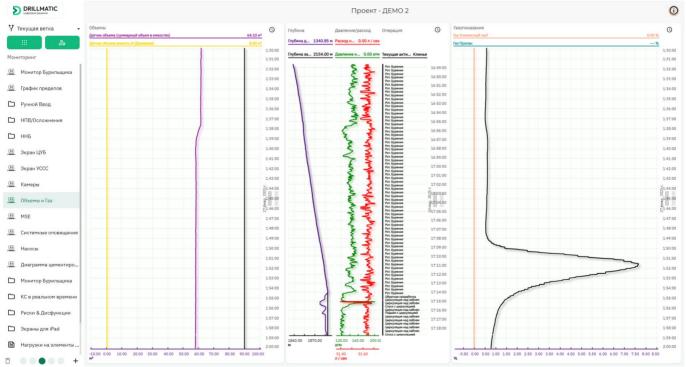


Рис. 4.52

MSE

Экран *MSE* отображает графики, отражающие результаты расчётов удельной механической энергии разрушения горной породы как на забое, так и на поверхности. Этот инструмент используется для оценки эффективности передачи энергии на долото и общей

производительности бурового процесса. Анализ этих данных помогает выявить участки с потенциальными потерями энергии и оптимизировать режим бурения.

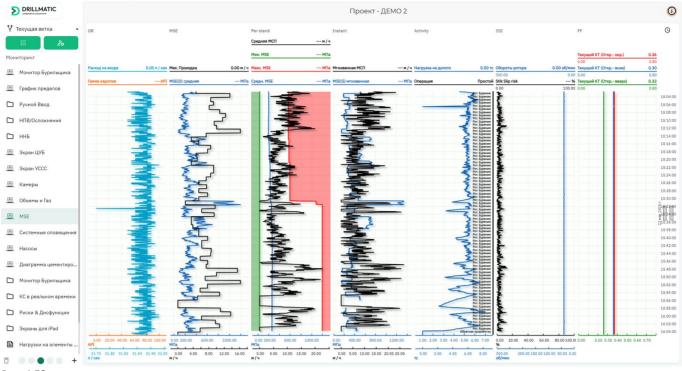


Рис. 4.53

Тренд КС

Экран Тренд КС предназначен для мониторинга процесса калибровки коэффициентов сопротивления в различных режимах работы — при спуске, подъёме и вращении колонны. Визуализация происходит в реальном времени, что позволяет оперативно отслеживать, как изменяются значения сопротивлений в открытом и обсаженном интервалах скважины, и своевременно корректировать параметры бурения.

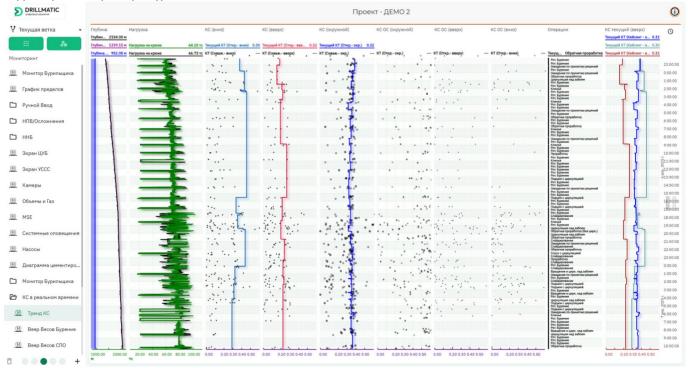


Рис. 4.54

Оценка рисков

Этот экран предназначен для анализа ключевых факторов риска, которые могут привести к аварийным ситуациям или осложнениям в процессе бурения скважины. Используя данные в режиме реального времени и историческую информацию, система помогает выявлять потенциальные угрозы и принимать своевременные меры для их предотвращения.

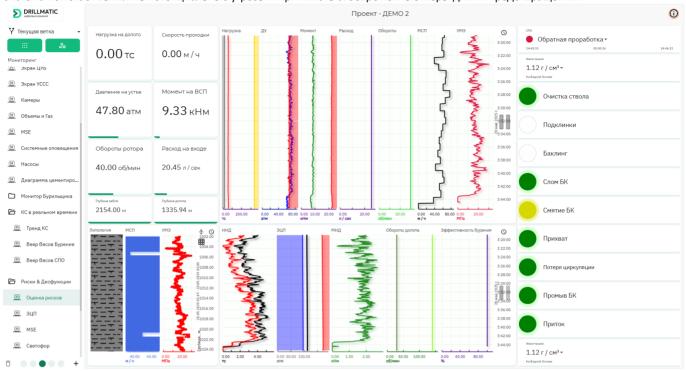


Рис. 4.55

Светофор

Данный экран визуализирует результаты оценки рисков аварий и осложнений в динамике с помощью цветовой индикации, напоминающей светофор. Такой формат позволяет быстро и наглядно определить текущий уровень опасности и своевременно реагировать на возникающие угрозы.

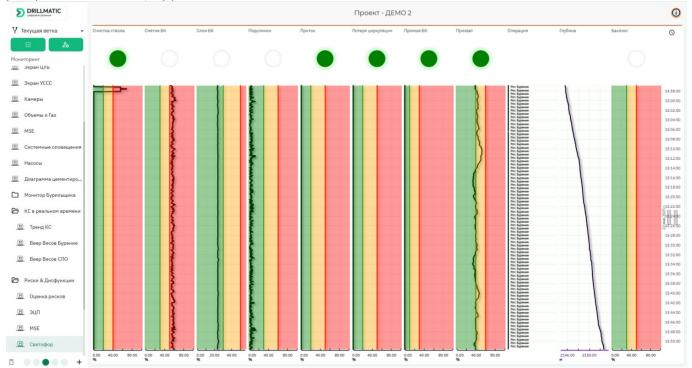


Рис. 4.56

ЭЦП

На этом экране отображаются данные по измерению ЭЦП в реальном времени. Также здесь можно оценить риски поглощения и проявления, которые могут возникнуть при превышении давления порового или гидроразрыва пласта. Такой мониторинг помогает своевременно выявлять опасные отклонения и предотвращать возможные осложнения в процессе бурения.

Рис. 4.57

Диаграмма цементирования

На этом экране представлены ключевые параметры процесса цементирования, которые собираются с датчиков тампонажного флота. Визуализация позволяет контролировать ход цементировочных работ в режиме реального времени и своевременно выявлять отклонения от нормативных показателей.

Веер весов и моментов

Этот инструмент предназначен для анализа фактического коэффициента трения в скважине. Он показывает отклонения от плановых значений на основе сравнения с эталонными кривыми во время выполнения различных операций, что помогает контролировать и оптимизировать процесс бурения.

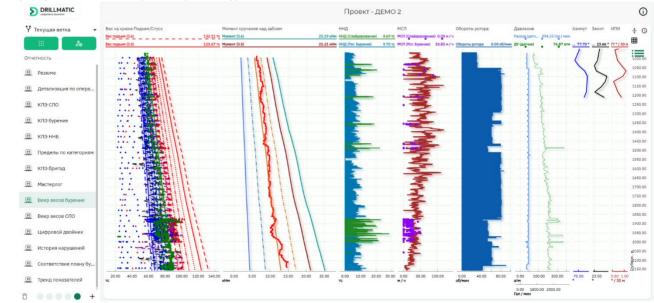


Рис.4.58

4.2.4. Анализ

Мастерлог

На этом экране отображаются графики ключевых геолого-технических параметров скважины в зависимости от глубины. Здесь можно просмотреть данные о режиме бурения, геологической характеристике и фактической траектории проходки, что обеспечивает комплексный анализ текущего состояния и динамики бурения.

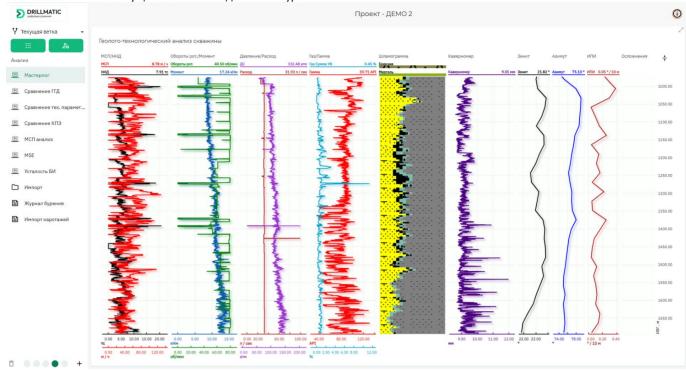


Рис. 4.59

Группа виджетов мультискважинного сравнения.

В состав данной группы входят следующие инструменты: сравнение ГГД, сравнение технологических параметров и сравнение ключевых показателей эффективности.

Сравнение ГГД.

Этот экран предоставляет возможность сопоставления графиков «глубина — день» для разных проектов. Для более детального анализа доступны фильтры, позволяющие исключить такие этапы, как спуско-подъёмные операции и наращивание бурения, а также переключить отображение только на буровые операции.

Сравнение технологических параметров.

Этот виджет позволяет проводить параллельный анализ мастерлогов разных проектов, что способствует оценке технологических характеристик и поиску оптимальных решений.

Рис. 4.61

Сравнение КПЭ

Экран предназначен для сравнения ключевых показателей эффективности между различными секциями или проектами, что позволяет выявить лучшие практики и узкие места в работе.

Эл. почта: info@drillmatic.ru

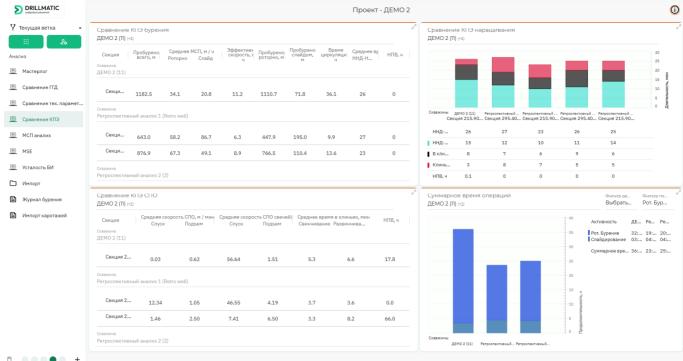


Рис. 4.62

Анализ МСП

На этом экране визуализируются облака значений скорости бурения с учётом режима с вращением и без него. Данные представлены в зависимости от нагрузки, приложенной к долоту, и перепада давления на нём, что помогает анализировать влияние этих параметров на эффективность проходки.

Усталость БИ

Инструмент предназначен для оценки накопленных усталостных повреждений в элементах бурильной колонны. Использование данного анализа позволяет своевременно выявлять потенциальные риски поломок и планировать техническое обслуживание.

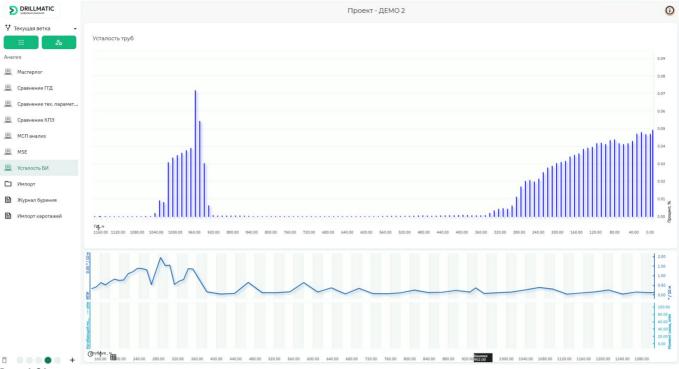


Рис. 4.64

Журнал бурения

Данный экран автоматически собирает и структурирует параметры режима бурения в виде стандартизированного слайдшита. Полученный отчёт доступен для экспорта и дальнейшего использования в аналитике и отчетности.

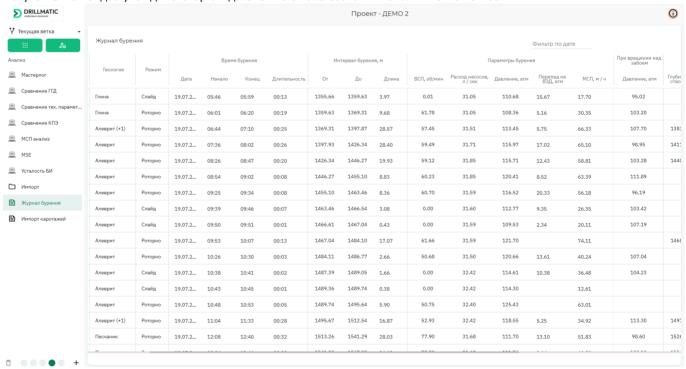


Рис. 4.65

Шламограмма

Этот инструмент предназначен для ввода данных о показаниях шлама в процессе бурения. Собранная информация используется для последующего отображения и анализа на мастерлоге.

Эл. почта: info@drillmatic.ru

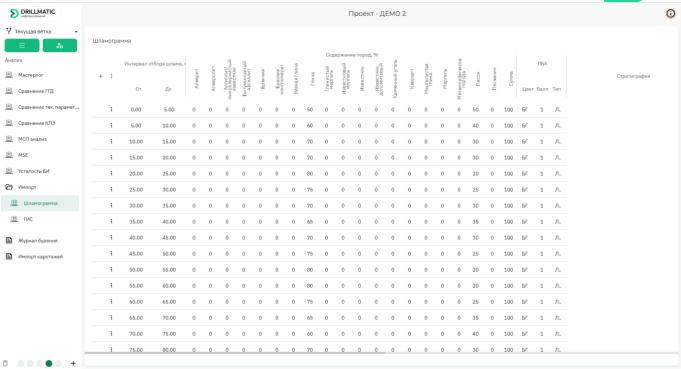


Рис. 4.66

4.2.5. Отчетность

Резюме

Экран «Резюме» предоставляет визуальное представление оперативной информации в виде диаграмм, отражающих распределение операций по фазам и статистику по сработанным пределам за выбранный временной интервал.

Операции автоматически классифицируются системой на две основные категории:

Бурение — все действия, происходящие в пределах 50 метров от забоя;

Спуск/подъем — операции, выполняемые на расстоянии более 50 метров от забоя.

Алгоритмы, встроенные в ПО «Дриллматик», обеспечивают автоматическое определение текущего типа выполняемой операции. Кроме того, на экране представлены ключевые показатели эффективности (КПЭ) для каждой фазы, что позволяет анализировать производительность по этапам строительства скважины.

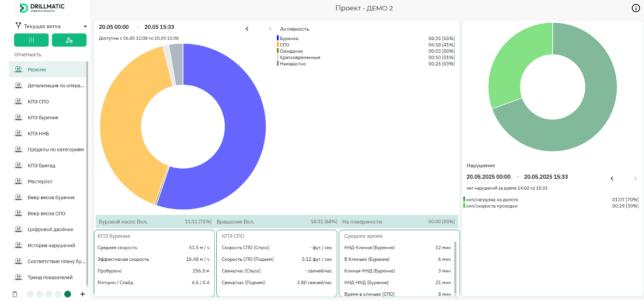


Рис.4.67

Детализация по операциям

Данный экран предоставляет расширенную детализацию выполняемых операций, разбитых по фазам. Пользователь может проанализировать, в течение какого времени во время каждой из операций происходили превышения заданных пределов, с группировкой по категориям. Это позволяет глубже оценить влияние различных факторов на ход работ и своевременно выявлять отклонения от норм.

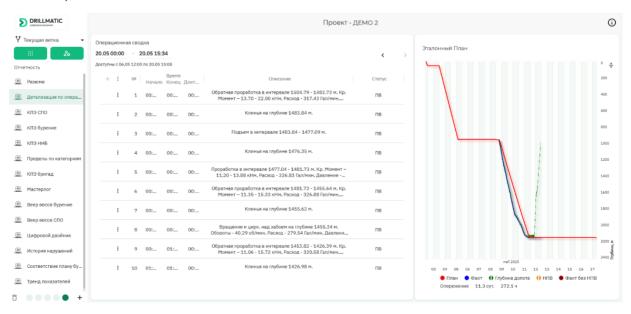
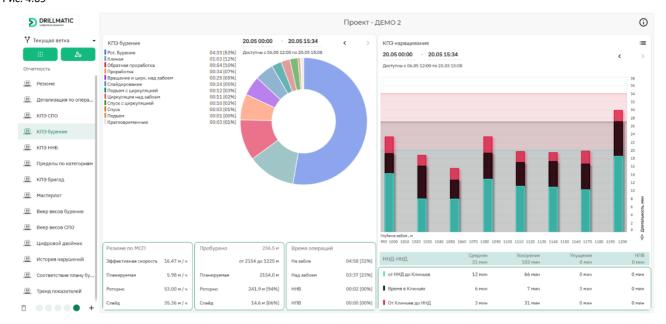



Рис.4.68

КПЭ бурение

На экране отображаются ключевые показатели эффективности (КПЭ), рассчитанные для фазы «Бурение». Также доступна информация о продолжительности периодов, в течение которых бурильная колонна находилась в статичном положении. Рис. 4.69

кпэ спо

На данном экране отображаются ключевые показатели эффективности (КПЭ), относящиеся к фазе спускоподъемных операций (СПО). Пользователь может оценить среднюю скорость выполнения СПО, а также длительность нахождения инструмента в клиньях при наращивании или разборке свечей и труб. Эти данные помогают выявлять узкие места и оптимизировать производственные процессы на данном этапе.

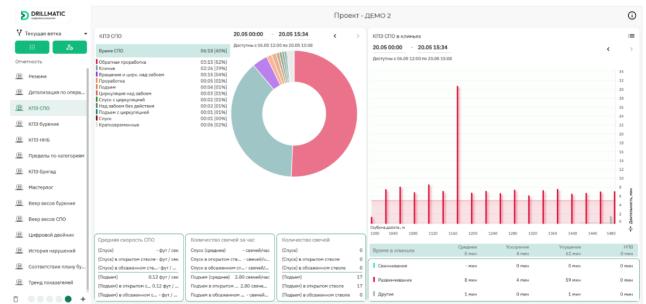
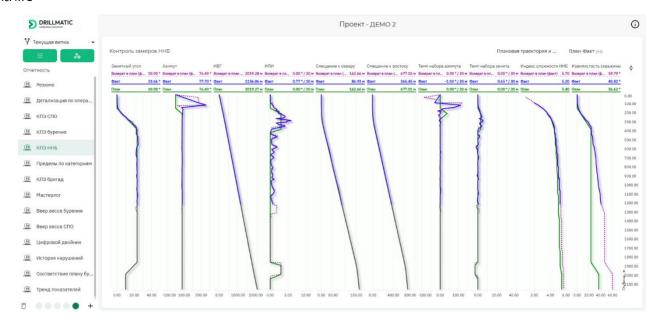



Рис. 4.70

кпэ ннб

Экран КПЭ ННБ предназначен для оценки точности бурения. Здесь отображается сравнение между запланированной траекторией скважины и фактическими измерениями инклинометрии, полученными от сервиса ННБ. Такой анализ позволяет оперативно выявлять отклонения от проектного курса и при необходимости корректировать направление бурения. Puc.4.71

Пределы по категориям

На этом экране представлена информация о случаях превышения установленных порогов по различным категориям. Все инциденты сгруппированы по четырем типам пределов, и для каждого события доступна подробная расшифровка. Анализ таких данных позволяет оперативно реагировать на аномалии и снижать риски возникновения аварийных ситуаций.

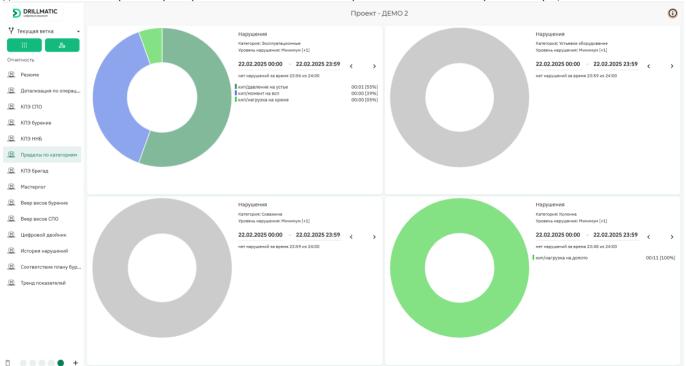
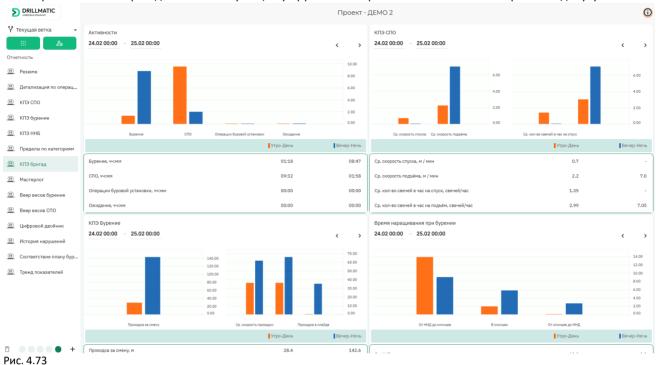


Рис.4.72

Данный экран предоставляет возможность сравнения эффективности работы дневной и ночной смен буровой бригады. Доступные для анализа показатели включают:


- Временные затраты на бурение и СПО;
- Скорость спускоподъемных операций (в свечах в час);
- Пройденное за смену расстояние (в метрах), а также средние значения механической скорости проходки (МСП) как в

роторном, так и в слайдовом режиме;

- Типы наращиваний в бурении (ННД \rightarrow клинья, клинья \rightarrow клинья, клинья \rightarrow ННД);
- Данные по наращиваниям во время СПО (время в клиньях, спуск, подъем);
- Среднюю скорость СПО в обсаженном и открытом стволе;
- Количество свечей, задействованных при спуске/подъеме;
- Время, затраченное на свинчивание и развинчивание в клиньях.

Эти метрики позволяют проводить комплексную оценку эффективности работы смен и выявлять направления для улучшений.

История нарушений

Экран «История нарушений» предназначен для анализа всех зафиксированных случаев превышения установленных пределов за выбранный период. Для удобства дальнейшей обработки предусмотрена возможность экспорта данных в формате CSV. Чтобы выполнить экспорт, необходимо кликнуть по иконке «Экспорт» и выбрать соответствующую опцию.

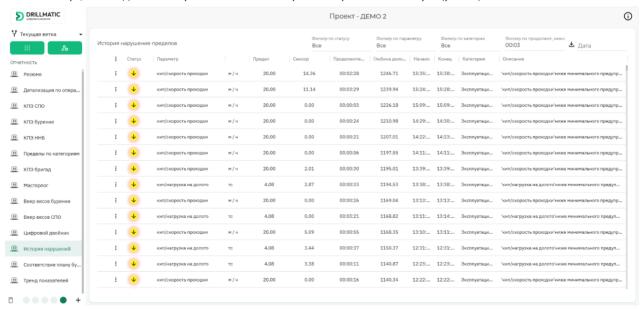


Рис.4.74

Цифровой двойник

Экран «Цифровой двойник» визуализирует сравнение между:

- Фактическими данными, поступающими с датчиков (отображаются красным цветом);
- Расчетными кривыми, полученными от цифрового двойника или РТ-модели (отображаются зеленым цветом).

Такое сопоставление позволяет оперативно выявлять расхождения между реальными условиями и расчетными моделями, что особенно полезно для мониторинга отклонений и принятия решений в реальном времени.

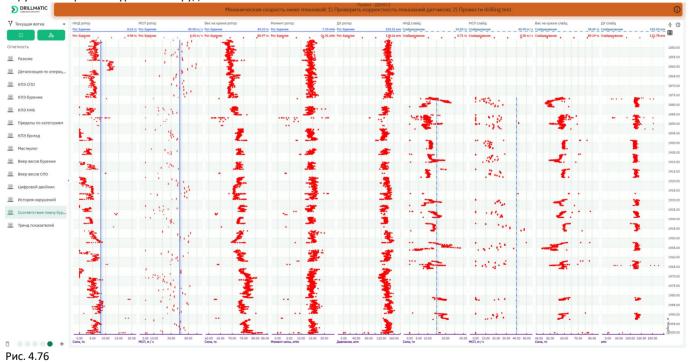
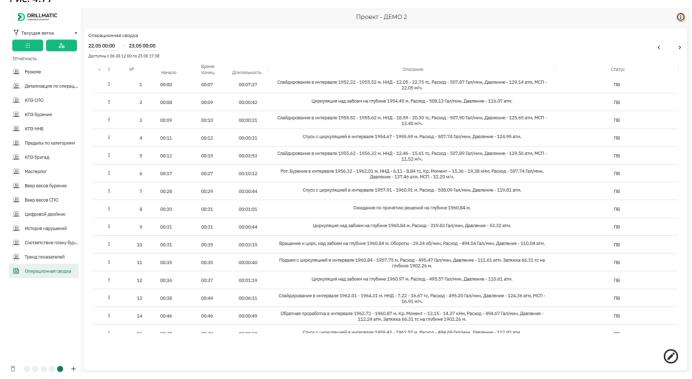



Рис.4.75

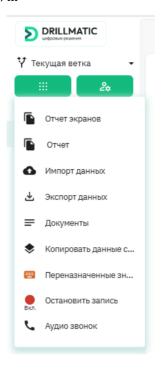
Соответствие плану бурения

На этом экране производится сравнение фактических данных с датчиков с запланированными параметрами бурения согласно активированной ветке плана. Визуализация отклонений помогает отслеживать соблюдение проектных режимов и выявлять нарушения в работе бурового оборудования.



Операционная сводка

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru


Экран «Операционная сводка» представляет собой список всех операций, зафиксированных за заданный временной интервал. Данные представлены в табличном виде с возможностью фильтрации и экспорта отчета в формате XLSX через меню «Отчет». Рис. 4.77

4.2.6. Команды

Команды доступны при нажатии на иконку 888.

Рис. 4.78

Они предоставляют пользователю быстрый доступ к дополнительным функциям и управлению данными внутри проекта. Список доступных команд:

- Отчет экранов
- Отчет
- Импорт данных
- Экспорт данных
- ДокументыЗатем выберите «Создать отчет».
- Копировать данные скважины
- Переназначенные значения
- Остановить/Включить запись
- Аудио Звонок

Отчет экранов

Система поддерживает автоматическое формирование отчетов в формате РРТХ, в которые можно включать любые визуализируемые экраны проекта.

Как сформировать отчет:

- 1. В левой панели интерфейса, напротив названия группы (например, «Отчетность»), нажмите на иконку 🚟.
- 2. В появившемся всплывающем меню выберите пункт «Отчет экранов» (см. Рис. 4.56).
- 3. Откроется окно выбора экранов для включения в отчет:
 - Отметьте необходимые экраны.
 - Нажмите «Создать снимки».

•

После завершения процесса отчет автоматически выгрузится на ваш компьютер (см. Рис. 4.57)

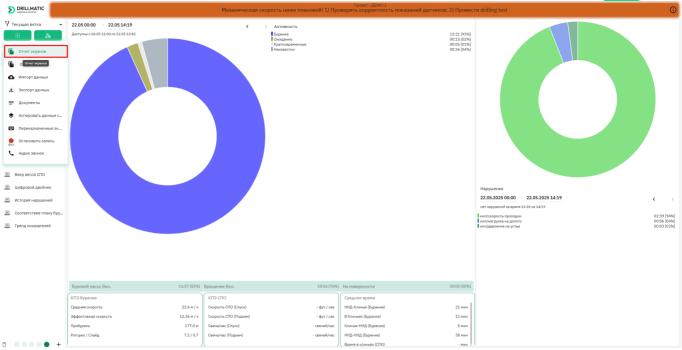


Рис. 4.79

Рис. 4.80

Отчет

В системе реализована функция автоматического формирования отчетов в формате XLSX. Доступны следующие типы отчетов:

- Отчет за рейс
- Суточный отчет
- Отчет за произвольный интервал времени
- Лист долива
- Журнал бурения

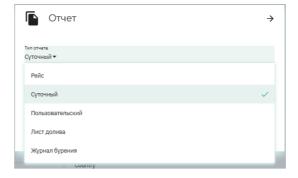


Рис. 4.81

Создание суточного отчета

- Выберите нужную дату.
- Установите время начала смены (по умолчанию 00:00).
- Нажмите кнопку «Создать» отчет будет автоматически сгенерирован и выгружен на компьютер.

Импорт данных

ПО «Дриллматик» позволяет импортировать в проект данные:

- по времени
- по глубине

Поддерживаемые форматы файлов:

- LAS
- CSV
- XLSX

Импорт может использоваться, например, для загрузки каротажа, инклинометрии или других сервисных данных в соответствующие секции проекта.

Экспорт данных

Система позволяет экспортировать любые доступные данные:

- по времени
- по глубине

Доступные форматы:

- CSV
- XLSX

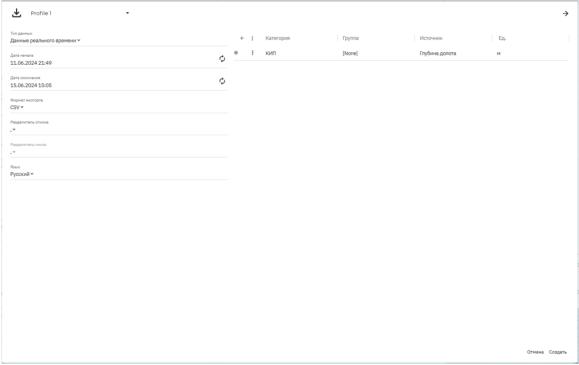


Рис. 4.82

Акционерное общество «ДРИЛЛМАТИК»

Эл. почта: info@drillmatic.ru

Настройки экспорта:

- 1. Выберите тип данных:
 - Данные реального времени
 - Плановые расчетные данные по глубине
 - Данные реального времени по глубине
- 2. Укажите интервал времени (начало и конец).
- 3. Выберите формат файла:
 - Для CSV: задайте формат табуляции и чисел
- 4. Укажите язык файла выгрузки.
- 5. Отметьте источники данных, которые требуется включить.

После подтверждения создается файл, готовый к загрузке на устройство пользователя.

Документы

«Дриллматик» также может использоваться как архив документации по скважине. Сюда можно поместить план-программу на бурение, суточный график, программу промывки и многое другие документы, необходимые для работы с проектом. Ограничения на тип и размер файлов отсутствуют.

Рис. 4.83

Копировать данные скважины

Данный инструмент позволяет копировать данные из любой ветки любого проекта на дата-центре в любую ветку текущего проекта.

Это полезно при работе с типовыми скважинами, у которых одинаковые конструкции, траектории, параметры режима бурения, геологическое строение.

Для выполнения:

- Выберите источник данных.
- Отметьте необходимые категории для копирования.
- Подтвердите операцию.

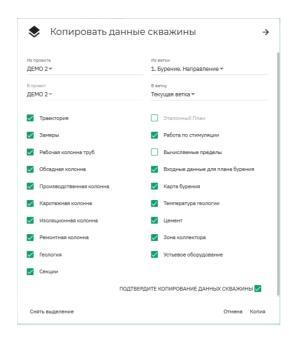


Рис. 4.84

Переназначенные значения

Для корректировки некорректных значений датчиков существует возможность форсированного назначения значения для источника данных.

Переназначить и сбросить переназначение значения также можно через виджет «Индикатор».

Рис. 4.85

Остановить/включить запись

Функция временного отключения записи данных используется во время монтажа и настройки шлюза. До тех пор, пока входящие данные не проверены, запись в дата-центр может быть приостановлена, чтобы исключить искажение статистики и расчётов КПЭ. Данный механизм защищён от случайного нажатия

Аудио-звонок.

Система поддерживает голосовые вызовы между пользователями без необходимости использования стороннего программного обеспечения. Для совершения вызова достаточно выбрать пользователя и инициировать соединение через интерфейс.

4.3. Аккаунты

На главном экране выбираем «Аккаунты»

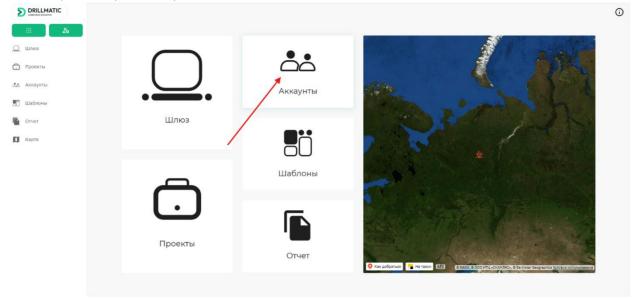


Рис. 4.86

Для управления доступом пользователей перейдите в раздел «Аккаунты» с главного экрана.

В этом разделе отображаются все сотрудники, подключённые к ПО «Дриллматик» и имеющие доступ к проектам вашей организации. В интерфейсе можно просматривать список пользователей и уровни их доступа:

USER — стандартный уровень. Позволяет просматривать все экраны и вносить изменения, связанные с техническими параметрами проекта.

ADMIN — полный доступ. Помимо возможностей USER, предоставляет управление настройками шлюза и шаблонов, а также права на изменение доступа других пользователей.

CLIENT — ограниченный доступ. Разрешён только просмотр отдельных экранов, без возможности редактирования или ввода информации.

4.4. Шаблоны

В системе реализована возможность создавать и использовать шаблоны, чтобы ускорить настройку новых проектов и устройств. Доступ к шаблонам осуществляется через меню: Drillmatic \rightarrow Шаблоны.

Пользователь может загружать ранее сохранённые шаблоны с преднастроенными параметрами и исходными данными. Все шаблоны можно редактировать и использовать повторно.

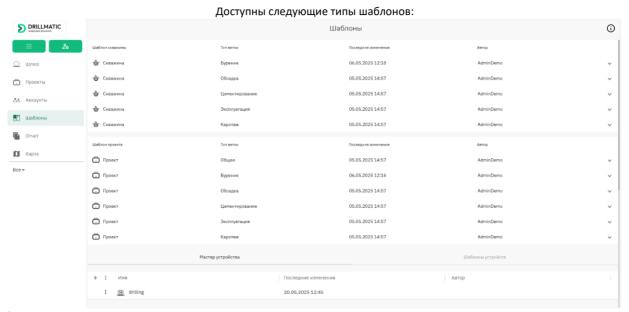


Рис. 4.87

Шаблоны скважины.

Содержат базовые настройки для различных типов проектных решений. Существует 5 предустановленных шаблонов, каждый из которых можно адаптировать под текущие задачи и применять при создании новых скважин

Шаблоны проекта.

Позволяют сохранить и повторно использовать набор характеристик проекта. Полезны при запуске типовых скважин, где требуется одинаковая структура данных и параметров.

Шаблоны устройства.

Можно сохранить текущую конфигурацию шлюза как шаблон. Для этого:

- Перейдите в Drillmatic → Шлюз.
- Выберите нужный шлюз, нажмите \equiv \rightarrow Инструменты \rightarrow Сохранить как шаблон.
- Укажите имя шаблона и сохраните.

Чтобы применить шаблон:

- Перейдите в Drillmatic → Шлюз.
- Выберите шлюз, нажмите \equiv \rightarrow Инструменты \rightarrow Загрузить шаблон.
- Отметьте нужные параметры и нажмите Применить.

Мастер Устройства

Мастер устройства служит для стандартизации настроек в ПО «Дриллматик» и удобного массового копирования групп настроек и перенастройки всех шлюзов одновременно.

Доступен в меню: Drillmatic \rightarrow Шаблоны \rightarrow Мастер устройства.

Доступ к этому разделу имеет только пользователь с уровнем ADMIN.

В Мастере устройства можно создавать и настраивать пределы, вычисления, группы и экраны.

Все внесённые настройки автоматически применяются ко всем шлюзам системы.

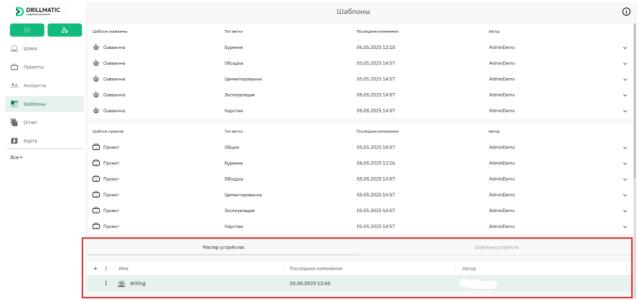


Рис. 4.88

4.5. Отчет

В главном меню выбираем пункт «Отчет»

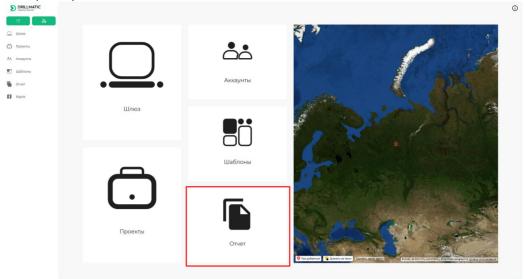


Рис. 4.89

Этот функционал позволяет сформировать суточный рапорт бурения по форме IADC, состоящий из 7 страниц:

- 1. Суточный отчет в нем содержится основная техническая информация о скважине
- 2. Баланс времени на этой странице ведется баланс времени скважины по операциями за каждые сутки с момента начала строительства
- 3. НПВ здесь вносится непроизводительное время, зафиксированное на скважине
- 4. КНБК журнал всех КНБК, используемых на скважине с эскизом
- 5. Журнал долот журнал всех долот используемых на скважине
- 6. Графики информация по балансу времени и НПВ, представленная в виде круговых диаграмм
- 7. Лист глушения инструмент для расчета листа глушения

Особенности:

- Отчет автоматически заполняется данными с датчиков в реальном времени, с возможностью ручного ввода.
- Для согласования отчетов требуется специальный уровень доступа.
- Итоговый отчет можно сохранить в формате XLSX, готовом к печати на листе A4.
- При создании отчетов по нескольким проектам за одну дату возможно сформировать сводный отчет с информацией по каждой скважине. Сводный отчет сохраняется в формате XLSX для печати на листе АЗ.



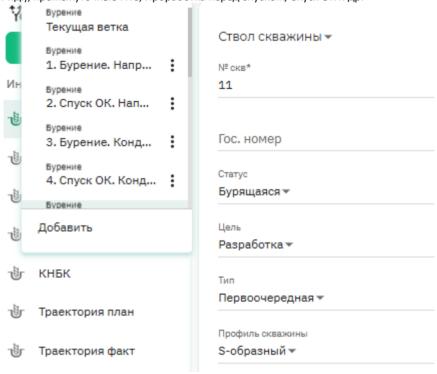
Рис. 4.90

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru

5. Схема основного рабочего процесса

5.1 Ввод исходных данных по скважине

Ввод исходных данных выполняется представителем Заказчика в разделе «Проекты» ПО «Дриллматик». Вносятся следующие данные:


- Наименование скважины, месторождение, компания Заказчика и прочая общая информация.
- Координаты устья, альтитуда стола ротора и другие технические параметры.
- Плановая траектория скважины.
- Геологические данные (стратиграфическая таблица) с указанием:
- градиентов порового давления,
- давления ГРП,
- модуля Юнга и др.
- Также задаются параметры промывочной жидкости по секциям, включая:
- плотность,
- условную вязкость.
- данные вискозиметра по 6 точкам.

5.2 Ввод плановых параметров по секции

Для ввода плановых параметров по каждой секции:

В меню «Проекты» выбрать проект, связанный с нужной скважиной и шлюзом.

В левом столбце меню напротив пункта «Текущая ветка» нажать на стрелку для выбора нужной секции: Направление, Кондуктор, ЭК, Хвостовик (1., 2., 3. и т.д.), промежуточные ГИС, Проработка перед спуском, Спуск ОК и др.

Puc 5 1

Ветки Геология и Траектория (плановая) обычно вводятся один раз и не требуют дальнейшей корректировки.

При выборе пункта меню (отмечается тёмным круглым индикатором слева от выбранного элемента) открывается возможность редактирования параметров.

Далее производится ввод конструкции скважины с указанием:

- Глубин спуска обсадных колонн и их диаметров.
- Конструкция вводится по рейсам: сначала глубина открытого ствола с соответствующим диаметром, затем глубины обсадки с диаметрами обсадных труб, и так далее до спуска окончательной колонны (ОК) или до достигнутой глубины забоя открытого ствола, если обсадка не завершалась.
- Для каждой созданной секции (КНБК) нужно перейти в раздел «КНБК» и внести все элементы с необходимыми характеристиками. Для каждого элемента доступна дополнительная настройка параметров.
- Если в выпадающем списке отсутствуют нужные элементы оборудования или труб, можно выбрать максимально приближённые и затем вручную откорректировать их параметры.

Особое внимание рекомендуется уделить корректности данных в следующих разделах: Геология (на уровне проекта)

Акционерное общество «ДРИЛЛМАТИК» Эл. почта: info@drillmatic.ru



Рис. 5.2

Траектория (на уровне проекта)

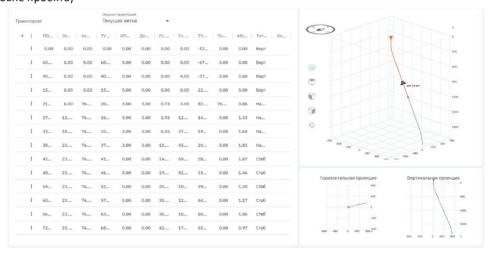


Рис. 5.3

кнбк:

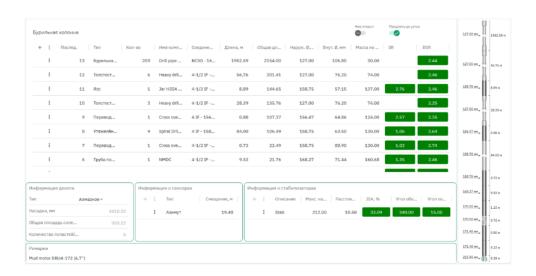


Рис. 5.4

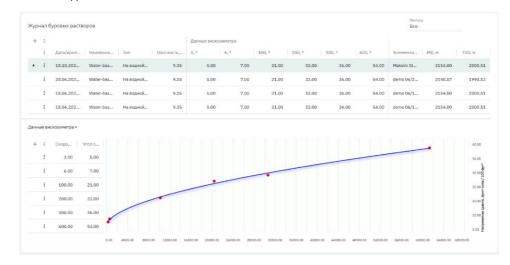


Рис. 5.5

5.3 Настройка расчетных параметров

«Дриллматик» выполняет основные расчеты, сопоставимые с ведущими мировыми программными решениями, но при этом отличается упрощённым и интуитивно понятным интерфейсом. Пользователю достаточно ввести исходные данные, а сложные алгоритмы работают в фоне, позволяя получить результаты в несколько кликов.

5.4 Основные возможности работы с мониторами

Программный интерфейс «Дриллматик» позволяет выводить любую текущую информацию на монитор, установленный рядом с бурильщиком. Это обеспечивает моментальную реакцию на срабатывание пределов и удобное восприятие данных с датчиков. Пользователь может настраивать конфигурацию монитора: выбирать тип виджетов (цифровые, стрелочные, арочные и др.), их расположение и единицы измерения. Настройка выполняется через соответствующий экран на странице «Мониторинг».

Рис. 5.6

5.5 Работа с данными в режиме реального времени

«Дриллматик» сопровождает работу скважины в реальном времени, что расширяет возможности контроля технологических операций. Основные параметры (давление, вес, нагрузки, момент вращения и др.) привязаны к модели реального времени. При отклонениях система моментально уведомляет всех участников процесса через баннер в интерфейсе, электронную почту и

Telegram.

Одним из ключевых расчетных параметров является коэффициент трения. Он вычисляется для каждого рейса с высокой точностью, сопоставимой или превосходящей ведущие программы. Результаты отображаются графически, что помогает отслеживать отклонения веса и момента от расчетных значений.

Гидравлические расчеты и сопоставление фактической траектории с плановой также интегрированы в модель реального времени с учётом параметров промывочной жидкости, состава КНБК, скорости спуска и других факторов. Это позволяет специалистам центров управления бурением постоянно контролировать соответствие технологических показателей расчетам.

6. Настройка основных каналов приёма данных в ПО «Дриллматик»

6.1. Настройка WITSO

WITS (Wellsite Information Transfer Specification) — телекоммуникационный протокол, используемый для обмена данными бурения между оборудованием на буровой и системами удалённого мониторинга. Протокол WITSO передаёт данные по стандартным или пользовательским записям. Первые шесть каналов являются системными и не подлежат изменению:

- Канал 1 номер скважины
- Канал 2 указатель на боковой ствол (обычно «0»)
- Канал 3 номер записи
- Канал 4 номер пакета
- Канал 5 дата измерения (ГГММДД)
- Канал 6 время измерения (ЧЧММСС)

ПО «Дриллматик» по умолчанию принимает запись 01, которая обновляется раз в секунду.

Изменение конфигурации и добавление источника WITSO

- Перейдите в меню шлюза, выберите пункт «Конфигурация», затем нажмите «Добавить конфигурацию».
- На экране конфигурации с помощью иконки карандаша выберите виджет WITS и добавьте его.

Укажите:

- Название конфигурации
- IP-адрес и порт TCP/IP источника (WITS-сервера)
- Названия и параметры каналов: номер записи, ID, тип, единицы измерения
- Сохраните конфигурацию

6.2. <u>Настройка Modbus</u>

Протокол Modbus также используется для приёма данных. Настройка схожа с WITSO, но требует точного указания регистра памяти. При отсутствии данных от датчика необходимо проверить:

- Наличие параметра в списке приёма
- Совпадение номера регистра
- Соответствие единиц измерения

Отдельное внимание следует уделить ВСП (верхнему силовому приводу):

При наличии ВСП необходимо использовать регистры:

- 40104 обороты ВСП
- 40106 момент на ВСП

При отсутствии ВСП:

- 40030 обороты ротора
- 40028 момент на роторе

6.3. Устранение неполадок при передаче данных

Ошибка 1: Приёмник не получает данные

- 1. Проверьте сетевое соединение (ping между WITS-сервером и шлюзом)
- 2. Убедитесь, что порт не занят (команда netstat -a)
- 3. Проверьте правильность ІР и порта приёмника и передатчика
- 4. Убедитесь в физической целостности соединений
- 5. Убедитесь, что используется протокол WITSO
- 6. Перезапустите ПО сервера и шлюз
- 7. Используйте симуляторы (например, Erdos Miller WITS Simulator) для проверки

Ошибка 2: Данные поступают частично или некорректно

- 1. Проверьте наличие параметров на WITS-сервере
- 2. Убедитесь в совпадении каналов и единиц измерения на обеих сторонах
- 3. Проверьте, выбран ли правильный источник данных в интерфейсе
- 4. Убедитесь, что частота передачи данных составляет 1 секунду
- 5. Перезапустите ПО сервера и шлюз

Ошибка 3: Отсутствие телеметрических статических замеров

- 1. Уточните у телеметристов возможность передачи по WITSO
- 2. Проверьте наличие записи 07 и каналов 13 (зенит), 14 (азимут), 8 (глубина)
- 3. Убедитесь, что замеры приняты и передаются телеметрической системой
- 4. Перезапустите соответствующее ПО
- 5. Общая проверка
- 6. Убедитесь, что интересующий канал добавлен в конфигурацию шлюза и на визуальные экраны мониторинга (например, «График пределов»)
- 7. Используйте программу PORTMON для анализа передаваемых пакетов
- 8. При необходимости, используйте симулятор WITS для проверки работоспособности сервера

Таблица 6.6

Название параметра в ДЭЛ	Единица измерения	Номер регистра MODBUS
Положение крюкоблока, м	М	40004
Давление в манифольде 1, МПа	Мпа	40006
Момент на гидроключе, кH*м	кН*М	40008
Вес на крюке 2, тс	тс	40010
Расход на выходе, %	%	40012
Загазованность 1 (НКПР), %	%	40014
Загазованность 2 (Н2S), мг/м3	мг/м3	40016
Загазованность 3 (Н2S), мг/м3	мг/м3	40018
Загазованность 4 (H2S), мг/м3	мг/м3	40020
Температура на выходе, гр.С	гр.С	40022
Расход на входе 1, л/сек	л/сек	40024
Момент на АКБ, кН*м	кН*м	40026
Момент на роторе <i>,</i> кН*м	кН*м	40028
Обороты ротора, об/мин	об/мин	40030
Давление в манифольде 2, МПа	МПа	40032
Момент на машинном ключе кН*м	кН*м	40034
Температура на входе	гр.С	40036
Загазованность 5 (H2S), мг/м3	мг/м3	40038
Плотность 1 г/см3	г/см3	40040
Плотность 2 г/см3	г/см3	40042
Плотность 3 г/см3	г/см3	40044
Плотность 4 г/см3	г/см3	40046
Плотность 5 г/см3	г/см4	40048
Плотность 6 г/см3	г/см5	40050
/ Уровень 1	СМ	40052
/ Уровень 2	СМ	40054
/ Уровень 3	СМ	40056
/ Уровень 4	СМ	40058
/ Уровень 5	СМ	40060
/ Уровень 6	СМ	40062
Объем 1	мЗ	40064
Объем 2	мЗ	40066
Объем 3	мЗ	40068
Объем 4	мЗ	40070
Объем 5	мЗ	40072
Объем 6	м3	40074
Объем суммарный	мЗ	40076
Нагрузка на долото т*c	т*с	40078

Продолжение таблицы 6.6

Название параметра в ДЭЛ	Единица измерения	Номер регистра MODBUS
Скорость проходки м/ч	м/ч	40080
Скорость СПО	м/с	40082
Глубина инструмента	М	40084
Глубина забоя	М	40086
Изм. Расхода на выходе %	%	40088
Подача свечи м	М	40090
Кол-во опущенных свеч	М	40092
Расход на выходе 2 сумма по насосам	л/сек	40094
Положение клиньев		40096
Загазованность 5 (НКП Р), %	мг/м3	40098
Уровень 7	СМ	40100
Объем 7	м3	40102
Обороты СВП об/мин	об/мин	40104
Момент СВП	кНм	40106
Уровень 8	СМ	
Объем 8	мЗ	40110
Ходы насоса 1	ход/мин	40112
Ходы насоса 2	ход/мин	40114
Ходы насоса СУММА	ход/мин	40116

7. Справочник применяемых вычислений

7.1. Основные категории данных ПО «Дриллматик»

ПО «Дриллматик» обрабатывает и анализирует данные из различных источников, сгруппированных по следующим основным категориям:

І. Данные, получаемые с датчиков КИП и А

Одним из ключевых источников исходных данных являются измерения, поступающие с контрольно-измерительных приборов и автоматики (КИП и A), установленных на буровой установке. Эти данные передаются в систему через шлюз с использованием промышленных протоколов: WITSO, WITSML, Modbus, OPC UA.

Каждый участник проекта (например, подрядчики ГТИ, ННБ и др.) подключает своё оборудование к «Шлюзу» для передачи соответствующих данных. Эталонный источник выбирается в конфигурации шлюза в разделе:

Шлюз → Конфигурации → Набор виртуальных каналов

(например: «КИП ГТИ», «КИП ННБ», «КИП Буровая»).

II. Статические данные, задаваемые вручную

Для корректной работы расчетных алгоритмов необходимо ввести определённые проектные и паспортные значения вручную. Эти данные включают механические, гидравлические и конструкционные параметры оборудования, элементов компоновки КНБК, обсадных колонн и самой скважины.

Источниками этих данных могут служить:

- техническая документация оборудования,
- проект на бурение,
- программы бурения и промывки.

Основные разделы, где вносятся статические данные:

- 1. Проекты → Информация о скважине → Геология
 - Ввод проектных данных по геологическому разрезу. Поддерживается импорт.
- 2. Проекты → Информация о скважине → График ГГД
 - Загрузка графика глубина-день (ГГД) для сравнения плановых и фактических данных по темпам бурения. Поддерживается импорт.
- 3. Проекты → Проектная информация → Дорожная карта
 - Ввод предельных и плановых значений на этапах строительства каждой секции скважины с учётом характеристик применяемого оборудования. Данные актуализируются при переходе к новой секции.
- Проекты → Настройка пределов → Предельные значения
 - Ввод эксплуатационных и ограничительных параметров оборудования. Актуализируется при смене операций или замене оборудования.

III. Динамические (расчетные) данные

ПО «Дриллматик» непрерывно вычисляет и обновляет динамические параметры на основе телеметрии и поступающих данных с частотой 1 Гц, формируя цифровую модель скважины в реальном времени.

На основе этих расчетов система:

- анализирует текущие процессы строительства скважины;
- предлагает оптимальные сценарии действий;
- предупреждает аварийные и нештатные ситуации;
- выдаёт рекомендации по реагированию и контролирует исполнение.

Ключевым элементом является гидромеханическая математическая модель, интегрированная с алгоритмами мониторинга и прогнозирования.

Результаты расчетов визуализируются в виде:

- графиков,
- индикаторов,
- диаграмм, представленных на вкладках пользовательского интерфейса.

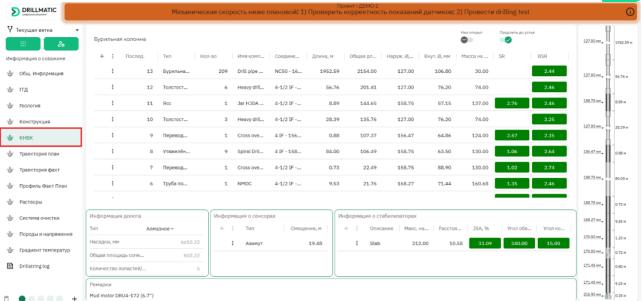


Рис. 7.1

Для каждого элемента компоновки доступен режим расширенной настройки, позволяющий вручную задать параметры конкретного оборудования.

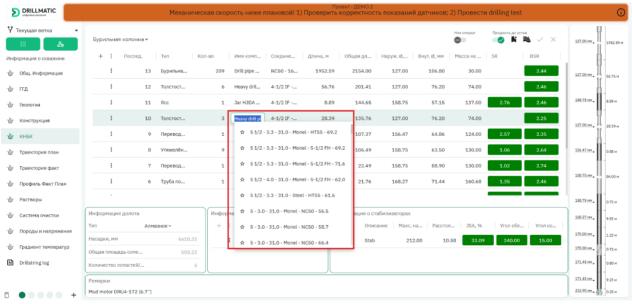


Рис. 7.2

Если нужного элемента оборудования или трубы нет в выпадающем списке, рекомендуется выбрать наиболее близкий по характеристикам аналог, после чего вручную скорректировать его параметры в соответствии с фактическими значениями. Особое внимание следует уделить таким элементам бурильной колонны, как долото и ВЗД — для них предусмотрены дополнительные гидравлические параметры, напрямую влияющие на точность расчётов. Их корректное заполнение критически важно для построения достоверной гидромеханической модели скважины.

7.2. Параметры промывочной жидкости, используемые в расчётах.

Для корректного проведения гидравлических и механических расчётов в процессе бурения необходимо задать параметры всех применяемых буровых растворов. Это выполняется в разделе:

«Проекты → Информация о скважине → Растворы».

Для добавления нового бурового раствора нажмите значок «+» под заголовком таблицы.

Рис. 7.3

В открывшейся форме укажите:

- Наименование бурового раствора;
- Основные реологические параметры;
- Тип реологической модели
- Исходные значения, соответствующие выбранной модели.

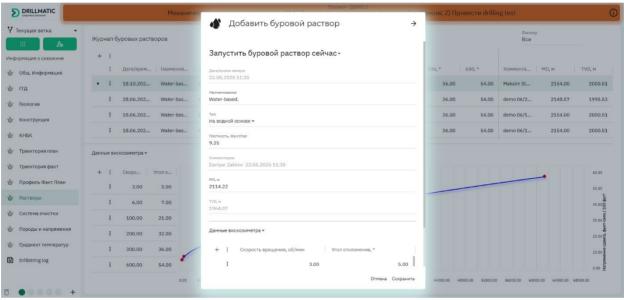


Рис. 7.3

Эти данные используются при расчётах нагрузок, напряжений, гидравлических параметров и других характеристик, связанных с циркуляцией промывочной жидкости.

7.3. Параметры секции, используемые в расчётах.

Для построения цифровой модели скважины и корректного выполнения инженерных расчётов (по текущему и плановому состоянию ствола, КНБК и обсадных колонн), необходимо внести информацию о конструкции каждой секции скважины. Это осуществляется в разделе:

«Проекты \Rightarrow Информация о скважине \Rightarrow Конструкция».

В данном разделе обязательно указывается:

- Параметры открытого ствола;
- Все обсаженные интервалы;
- Геометрические и механические характеристики обсадных труб.

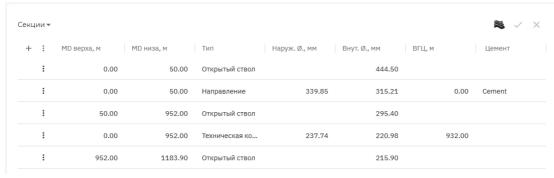


Рис. 7.4

Для каждой секции можно открыть расширенные параметры (панель слева) и при необходимости задать дополнительные характеристики обсадной колонны, включая:

- Толщину стенки и наружный диаметр;
- Материал и предел текучести;
- Тип резьбы и муфтовые соединения;
- Коэффициенты для расчётов гидравлики и прочности.

Эти данные являются обязательной частью для точных инженерных расчетов и последующего моделирования всех операций в пределах соответствующей секции.

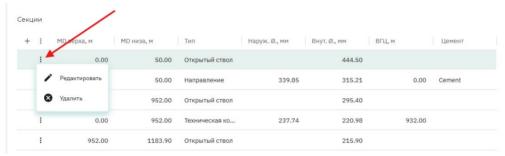


Рис. 7.5

8. Настройки виджетов

8.1. Настройка Визуализации

В ПО **«Дриллматик»** предусмотрена гибкая настройка отображения измеряемых и расчётных параметров в виде интерактивных виджетов на пользовательских экранах. Это позволяет адаптировать представление данных под потребности различных специалистов.

Для настройки визуализации:

- Перейдите в раздел Проект и откройте нужный экран.
- Найдите необходимый виджет и дважды щёлкните по нему.

Справа откроется меню конфигурации виджета, где можно задать следующие параметры отображения:

- Тип визуализации (цифровой индикатор, стрелочный спидометр, круговой индикатор, диаграмма и др.);
- Цветовое оформление (фон, цифры, шкалы);
- Толщина линий и шрифтов;
- Диапазоны значений и пороговые зоны (например: нормальная, предупреждение, авария).

Эти настройки позволяют создать максимально наглядное представление технологических параметров и обеспечить оперативное реагирование на изменения в процессе бурения.

Рис. 8.1

8.2. Настройка Данных

Рассмотрим настройку выводимых данных на примере виджета типа «Индикатор», размещённого на экране «Монитор бурильшика».

В настройках виджета необходимо выполнить следующие шаги:

- В разделе «Категории» выбрать категорию отображаемых данных например, КИП, если требуется вывести глубину забоя.
- В поле «Источник данных» из выпадающего списка выбрать нужный параметр, в данном случае Глубина забоя.
- В поле «Заголовок» задать пользовательское название виджета. Это может быть любое наименование, отражающее смысл отображаемого параметра например, «Глубина долота».

Такая настройка позволяет точно определить, какие данные и в каком виде будут отображаться, обеспечивая удобство восприятия информации пользователем.

Рис. 8.2

